<office:document>
<office:meta>
<meta:document-statistic></meta:document-statistic>
<meta:generator>LibreOffice/6.4.3.2$Linux_X86_64 LibreOffice_project/747b5d0ebf89f41c860ec2a39efd7cb15b54f2d8</meta:generator>
</office:meta><office:settings>
<config:config-item-set>
<config:config-item>0</config:config-item>
<config:config-item>0</config:config-item>
<config:config-item>14099</config:config-item>
<config:config-item>9999</config:config-item>
</config:config-item-set><config:config-item-set>
</office:settings><config:config-item>true</config:config-item>
<config:config-item>$(brandbaseurl)/share/palette%3B$(userpath)/config/standard.sob</config:config-item>
<config:config-item>0</config:config-item>
<config:config-item>$(brandbaseurl)/share/palette%3B$(userpath)/config/standard.soc</config:config-item>
<config:config-item>$(brandbaseurl)/share/palette%3B$(userpath)/config/standard.sod</config:config-item>
<config:config-item>1270</config:config-item>
<config:config-item>true</config:config-item>
<config:config-item>true</config:config-item>
<config:config-item>false</config:config-item>
<config:config-item>true</config:config-item>
<config:config-item>false</config:config-item>
<config:config-item>$(brandbaseurl)/share/palette%3B$(userpath)/config/standard.sog</config:config-item>
<config:config-item>$(brandbaseurl)/share/palette%3B$(userpath)/config/standard.soh</config:config-item>
<config:config-item>false</config:config-item>
<config:config-item>false</config:config-item>
<config:config-item>true</config:config-item>
<config:config-item>true</config:config-item>
<config:config-item>false</config:config-item>
<config:config-item>false</config:config-item>
<config:config-item>true</config:config-item>
<config:config-item>false</config:config-item>
<config:config-item>false</config:config-item>
<config:config-item>false</config:config-item>
<config:config-item>$(brandbaseurl)/share/palette%3B$(userpath)/config/standard.soe</config:config-item>
<config:config-item>false</config:config-item>
<config:config-item>7</config:config-item>
<config:config-item>4</config:config-item>
<config:config-item>false</config:config-item>
<config:config-item>0</config:config-item>
<config:config-item>low-resolution</config:config-item>
<config:config-item></config:config-item>
<config:config-item>false</config:config-item>
<config:config-item></config:config-item>
<config:config-item>true</config:config-item>
<config:config-item>false</config:config-item>
<config:config-item>1</config:config-item>
<config:config-item>1</config:config-item>
<config:config-item>true</config:config-item>
</config:config-item-set><office:scripts>
<office:script>
</office:scripts><ooo:libraries></ooo:libraries>
</office:script><office:font-face-decls>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
<style:font-face></style:font-face>
</office:font-face-decls><office:styles>
<draw:gradient></draw:gradient>
<draw:gradient></draw:gradient>
<draw:gradient></draw:gradient>
<draw:gradient></draw:gradient>
<draw:gradient></draw:gradient>
<draw:gradient></draw:gradient>
<draw:marker></draw:marker>
<draw:stroke-dash></draw:stroke-dash>
<style:default-style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties>
<style:tab-stops></style:tab-stops>
</style:paragraph-properties><style:text-properties></style:text-properties>
</style:default-style><style:style></style:style>
<style:style></style:style>
<style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
</office:styles><style:graphic-properties></style:graphic-properties>
</style:style><office:automatic-styles>
<style:page-layout>
<style:page-layout-properties></style:page-layout-properties>
</style:page-layout><style:style>
<style:drawing-page-properties></style:drawing-page-properties>
</style:style><style:style></style:style>
<style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:graphic-properties></style:graphic-properties>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<style:paragraph-properties></style:paragraph-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<loext:graphic-properties></loext:graphic-properties>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><style:style>
<style:text-properties></style:text-properties>
</style:style><text:list-style>
</office:automatic-styles><text:list-level-style-bullet>
<style:list-level-properties></style:list-level-properties>
<style:text-properties></style:text-properties>
</text:list-level-style-bullet><text:list-level-style-bullet>
<style:list-level-properties></style:list-level-properties>
<style:text-properties></style:text-properties>
</text:list-level-style-bullet><text:list-level-style-bullet>
<style:list-level-properties></style:list-level-properties>
<style:text-properties></style:text-properties>
</text:list-level-style-bullet><text:list-level-style-bullet>
<style:list-level-properties></style:list-level-properties>
<style:text-properties></style:text-properties>
</text:list-level-style-bullet><text:list-level-style-bullet>
<style:list-level-properties></style:list-level-properties>
<style:text-properties></style:text-properties>
</text:list-level-style-bullet><text:list-level-style-bullet>
<style:list-level-properties></style:list-level-properties>
<style:text-properties></style:text-properties>
</text:list-level-style-bullet><text:list-level-style-bullet>
<style:list-level-properties></style:list-level-properties>
<style:text-properties></style:text-properties>
</text:list-level-style-bullet><text:list-level-style-bullet>
<style:list-level-properties></style:list-level-properties>
<style:text-properties></style:text-properties>
</text:list-level-style-bullet><text:list-level-style-bullet>
<style:list-level-properties></style:list-level-properties>
<style:text-properties></style:text-properties>
</text:list-level-style-bullet><text:list-level-style-bullet>
</text:list-style><style:list-level-properties></style:list-level-properties>
<style:text-properties></style:text-properties>
</text:list-level-style-bullet><office:master-styles>
<draw:layer-set>
<draw:layer></draw:layer>
<draw:layer></draw:layer>
<draw:layer></draw:layer>
<draw:layer></draw:layer>
<draw:layer></draw:layer>
</draw:layer-set><style:master-page></style:master-page>
<style:master-page></style:master-page>
<style:master-page></style:master-page>
<style:master-page></style:master-page>
<style:master-page></style:master-page>
</office:master-styles><office:body>
</office:document><office:drawing>
</office:body><draw:page>
<draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>329</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>| Campus | V. XXV | No. 30 | julio-diciembre
</text:p><text:s></text:s>
| 2020 | <text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>| ISSN (impreso): 1812-6049 | ISSN (en línea): 2523-1820 |
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Barreras epistemológicas para la arquitectura </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de los datos y la significación en el modelo </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>predictivo de la ciencia</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>r</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>EsumEn</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Los
</text:p><text:s></text:s>
datos <text:s></text:s>
y <text:s></text:s>
la <text:s></text:s>
significación <text:s></text:s>
representan <text:s></text:s>
estructuras <text:s></text:s>
secuenciales </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>para </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>relevancia </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>científica. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>El </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>propósito </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>del </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>estudio </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>fue </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>identificar barreras epistemológicas en la arquitectura de los datos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>y la significación del modelo predictivo de la ciencia. El estudio se </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>realizó desde enero hasta julio del 2020 seleccionándose mediante </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>un
</text:p><text:s></text:s>
muestreo <text:s></text:s>
probabilístico <text:s></text:s>
aleatorio, <text:s></text:s>
100 <text:s></text:s>
artículos <text:s></text:s>
de <text:s></text:s>
Scopus </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>donde se accedió a través, de la plataforma ScienceDirect como </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>herramienta científica de búsqueda. Las estructuras secuenciales </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>se
</text:p><text:s></text:s>
compararon <text:s></text:s>
mediante <text:s></text:s>
la <text:s></text:s>
prueba <text:s></text:s>
t-Student <text:s></text:s>
considerándose </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>significativos los resultados con un nivel de confianza del 95% y </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>dónde se encontró diferencias entre ellas (t = -53,88; p = 7,09). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Se
</text:p><text:s></text:s>
observó <text:s></text:s>
que, <text:s></text:s>
el <text:s></text:s>
análisis <text:s></text:s>
de <text:s></text:s>
los <text:s></text:s>
datos <text:s></text:s>
fue <text:s></text:s>
menos <text:s></text:s>
relevante <text:s></text:s>
en </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>comparación con la importancia que se atribuye a su significación. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Se concluyó que, la identificación de las barreras epistemológicas </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>para la arquitectura de los datos y la significación en el modelo </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>predictivo </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>ciencia </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>representa </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>una </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>guía </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>a </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>considerarse </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>para
</text:p><text:s></text:s>
la <text:s></text:s>
medición <text:s></text:s>
de <text:s></text:s>
las <text:s></text:s>
variables <text:s></text:s>
y <text:s></text:s>
su <text:s></text:s>
interpretación <text:s></text:s>
hacia <text:s></text:s>
un </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>conocimiento científico.
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Palabras
<text:s></text:s>
clave: </text:span><text:span>
</text:p><text:s></text:s>
ciencia de datos, relevancia estadística,modelos </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>predictivos, puntos críticos, conocimiento científico</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>a</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>bstraCt</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Data
</text:p><text:s></text:s>
and <text:s></text:s>
the <text:s></text:s>
significance <text:s></text:s>
represent <text:s></text:s>
sequential <text:s></text:s>
structures <text:s></text:s>
for </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>scientific
</text:p><text:s></text:s>
relevance. <text:s></text:s>
The <text:s></text:s>
purpose <text:s></text:s>
of <text:s></text:s>
the <text:s></text:s>
study <text:s></text:s>
was <text:s></text:s>
to <text:s></text:s>
identify </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>epistemological </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>barriers </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>in </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>the </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>architecture </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>to </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>data </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>and </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>the </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>significance
</text:p><text:s></text:s>
of <text:s></text:s>
the <text:s></text:s>
predictive <text:s></text:s>
model <text:s></text:s>
of <text:s></text:s>
science. <text:s></text:s>
The <text:s></text:s>
study <text:s></text:s>
was </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>carried
</text:p><text:s></text:s>
from <text:s></text:s>
January <text:s></text:s>
to <text:s></text:s>
July <text:s></text:s>
2020, <text:s></text:s>
selecting <text:s></text:s>
100 <text:s></text:s>
randomized </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Scopus articles through a random probabilistic sampling, using </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>the ScienceDirect platform as a scientific search tool. Sequential </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>structures were compared using the t-Student test, the results being </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>considered significant with a confidence level of 95% and where </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>differences were found between them (t = -53.88; p = 7.09). It was </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>observed that the analysis for the data was less relevant compared </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>to the importance attributed to its significance. It was concluded </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>that
</text:p><text:s></text:s>
the <text:s></text:s>
identification <text:s></text:s>
of <text:s></text:s>
the <text:s></text:s>
epistemological <text:s></text:s>
barriers <text:s></text:s>
for <text:s></text:s>
the </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>architecture to data and the significance in the predictive model of </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>science represents a guide to consider for the measurement of the </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>variables and their interpretation towards scientific knowledge.</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Key words:</text:span>
<text:span> data science, statistical relevance, predictive models, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>critical points, scientific knowledge</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>George Argota Pérez </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>1 </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Rita L. Valenzuela Herrera </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>2a</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Gladys R. Huamán Espinoza </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>2b</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Rosa Aroste Andía </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>3</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Emily Hernández Huamani </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>3</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Percy Gavilán Chávez </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>3</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Kony L. Duran Llaro </text:span>
</text:p><draw:line>
<text:p></text:p>
</draw:line><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>4</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>1
</text:p><text:s></text:s>
Centro <text:s></text:s>
de <text:s></text:s>
Investigaciones <text:s></text:s>
Avanzadas </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>y Formación Superior en Educación, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Salud y Medio Ambiente ¨AMTAWI¨. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Puno, Perú. george.argota@gmail.com</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>2 </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Universidad </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Nacional </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>San </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Luis </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Gonzaga de Ica (UNICA). Ica-Perú.
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>a) </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Facultad de Farmacia y Bioquímica.</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>b) </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Facultad de Odontología. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>3
</text:p><text:s></text:s>
Escuela de Estomatología. Universidad </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Privada
</text:p><text:s></text:s>
San <text:s></text:s>
Juan <text:s></text:s>
Bautista <text:s></text:s>
(UPSJB). </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Ica-Perú. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>4
</text:p><text:s></text:s>
Escuela </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Posgrado. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Universidad </text:span>
</text:p><draw:line>
<text:p></text:p>
</draw:line><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>César Vallejo (UCV). Trujillo-Perú. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Epistemological barriers for the architecture of data and the </text:span>
</text:p><draw:line>
<text:p></text:p>
</draw:line><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>significance in the predictive model of sciencia</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Recibido:
</text:p><text:s></text:s>
agosto 20 de 2020 <text:s></text:s>
| <text:s></text:s>
Revisado: <text:s></text:s>
setiembre 12 de 2020 <text:s></text:s>
| <text:s></text:s>
Aceptado: <text:s></text:s>
octubre 02 de 2020</text:span><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>https://doi.org/10.24265/campus.2020.v25n30.08</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>|
</text:p><text:s></text:s>
Campus <text:s></text:s>
| <text:s></text:s>
V. <text:s></text:s>
XX V | <text:s></text:s>
N. 30 <text:s></text:s>
| <text:s></text:s>
PP. 329-336 <text:s></text:s>
| <text:s></text:s>
julio-diciembre <text:s></text:s>
| <text:s></text:s>
2020 <text:s></text:s>
|</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>© Los autores. Este artículo es publicado por la Revista Campus de la Facultad de Ingeniería y Arquitectura de la Universidad </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de San Martín de Porres. Este artículo se distribuye en los términos de la Licencia Creative Commons Atribución No-comercial </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>–
<text:s></text:s>
</text:span><text:span>Compartir-Igual
</text:p><text:s></text:s>
4.0 <text:s></text:s>
Internacional <text:s></text:s>
(https://creativecommons.org/licenses/ <text:s></text:s>
CC-BY), <text:s></text:s>
que <text:s></text:s>
permite <text:s></text:s>
el <text:s></text:s>
uso <text:s></text:s>
no <text:s></text:s>
comercial, </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>distribución
</text:p><text:s></text:s>
y <text:s></text:s>
reproducción <text:s></text:s>
en <text:s></text:s>
cualquier <text:s></text:s>
medio <text:s></text:s>
siempre <text:s></text:s>
que <text:s></text:s>
la <text:s></text:s>
obra <text:s></text:s>
original <text:s></text:s>
sea <text:s></text:s>
debidamente <text:s></text:s>
citada. <text:s></text:s>
Para <text:s></text:s>
uso <text:s></text:s>
comercial </text:span><draw:frame>
</draw:page><draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>contactar a: revistacampus@usmp.pe.</text:span>
</text:p><draw:page>
<draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>330</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>| Campus | V. XXV | No. 30 | julio-diciembre
</text:p><text:s></text:s>
| 2020 | <text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>| ISSN (impreso): 1812-6049 | ISSN (en línea): 2523-1820 |
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Introducción</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>La afirmación y los conceptos en cualquier </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>disciplina son dos características del debate </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>científico (Chan </text:span>
<text:span>et al</text:span>
<text:span>., 2018; Peña, 2019; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Kenter </text:span>
<text:span>et al</text:span>
<text:span>., 2019) ya que se necesita de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>argumentos,
</text:p><text:s></text:s>
afirmaciones, <text:s></text:s>
juicios, <text:s></text:s>
teorías </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>críticas sobre el cómo, podría demostrarse </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>un </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>determinado </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>conocimiento </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(Couper, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>2020). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Aunque </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>las </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>conceptualizaciones </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>por
</text:p><text:s></text:s>
lo <text:s></text:s>
general, <text:s></text:s>
dependen <text:s></text:s>
de <text:s></text:s>
las <text:s></text:s>
escuelas </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>pensamiento </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(Rawluk </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>et </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>al</text:span>
<text:span>., </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>2019; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Kronenburg & Andersson, 2019) uno de los </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>actuales paradigmas para la productividad </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>está
</text:p><text:s></text:s>
en <text:s></text:s>
la <text:s></text:s>
combinación <text:s></text:s>
de <text:s></text:s>
la <text:s></text:s>
ciencia <text:s></text:s>
de </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>los
</text:p><text:s></text:s>
datos <text:s></text:s>
(Ceri, <text:s></text:s>
2018) <text:s></text:s>
y <text:s></text:s>
los <text:s></text:s>
pilares <text:s></text:s>
del </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>análisis e interpretación de esos datos que </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>proporciona
</text:p><text:s></text:s>
la <text:s></text:s>
estadística <text:s></text:s>
y <text:s></text:s>
que <text:s></text:s>
plantea </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>nuevos desafíos en el planteamiento de los </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>problemas </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>metodológicos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>contrapuestos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>con </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>los </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>enfoques </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>tradicionales </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(Secchi, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>2018). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Parece
</text:p><text:s></text:s>
ser <text:s></text:s>
muy <text:s></text:s>
diferenciable <text:s></text:s>
que <text:s></text:s>
la </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>ciencia de datos no es estadística </text:span>
<text:span>per se</text:span>
<text:span>, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>pues
</text:p><text:s></text:s>
en <text:s></text:s>
las <text:s></text:s>
habilidades <text:s></text:s>
del <text:s></text:s>
modelado <text:s></text:s>
e </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>inferencias no se enfatiza. En la primera, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>existe
</text:p><text:s></text:s>
el <text:s></text:s>
almacén <text:s></text:s>
y <text:s></text:s>
acceso <text:s></text:s>
a <text:s></text:s>
los <text:s></text:s>
datos </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>mediante </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>algoritmos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>comprensión </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>sobre </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>el </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>cómo, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>implementarse </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>un </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>método
</text:p><text:s></text:s>
de <text:s></text:s>
análisis <text:s></text:s>
elegido <text:s></text:s>
por <text:s></text:s>
cuanto, </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>no
</text:p><text:s></text:s>
se <text:s></text:s>
establece <text:s></text:s>
el <text:s></text:s>
desarrollo <text:s></text:s>
de <text:s></text:s>
teorías </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>estadísticas (Klein </text:span>
<text:span>et al</text:span>
<text:span>., 2014; Dunson, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>2018). Algunas preguntas epistemológicas </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>se </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>pueden </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>formular </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>para </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>asumir </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>que </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>algunos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>modelos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>predicción </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>científicos,
</text:p><text:s></text:s>
constituyen <text:s></text:s>
explicaciones <text:s></text:s>
de </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la realidad pues de lo contrario, detalles </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>significativos
</text:p><text:s></text:s>
no <text:s></text:s>
se <text:s></text:s>
considerarían <text:s></text:s>
y <text:s></text:s>
por </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>tanto, influirían en las inferencias. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Entre </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>otros </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>puede </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>mencionarse </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>a </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>falta </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>equilibrio </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>en </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>los </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>diseños </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>aleatorios (Little, 2011), la relación entre </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la
</text:p><text:s></text:s>
observación <text:s></text:s>
que <text:s></text:s>
se <text:s></text:s>
establece <text:s></text:s>
con <text:s></text:s>
el </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>objeto
</text:p><text:s></text:s>
de <text:s></text:s>
referencia <text:s></text:s>
seleccionado <text:s></text:s>
(Cox, </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>2018),
</text:p><text:s></text:s>
la <text:s></text:s>
heterogeneidad <text:s></text:s>
en <text:s></text:s>
el <text:s></text:s>
análisis </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de
</text:p><text:s></text:s>
poblaciones <text:s></text:s>
grandes <text:s></text:s>
(Bühlmann <text:s></text:s>
& </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Meinshausen,
</text:p><text:s></text:s>
2016), <text:s></text:s>
el <text:s></text:s>
reconocimiento </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de
</text:p><text:s></text:s>
las <text:s></text:s>
réplicas <text:s></text:s>
y <text:s></text:s>
la <text:s></text:s>
precisión <text:s></text:s>
durante <text:s></text:s>
la </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>agregación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>y </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>estratificación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(Ashley, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>2016; Bühlmann & van der Geer, 2018).</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>El propósito del estudio fue identificar </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>barreras epistemológicas en la arquitectura </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de los datos y la significación del modelo </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>predictivo de la ciencia.
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Materiales y Métodos</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>El estudio se realizó desde enero hasta </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>julio del 2020 y se seleccionó mediante </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>un </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>muestreo </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>probabilístico </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>aleatorio, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>100 </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>artículos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Scopus </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>a </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>los </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>cuales </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de
</text:p><text:s></text:s>
se <text:s></text:s>
accedió <text:s></text:s>
a <text:s></text:s>
través, <text:s></text:s>
de <text:s></text:s>
la <text:s></text:s>
plataforma </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>ScienceDirect </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>como </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>herramienta </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>científica de búsqueda (Figura 1).</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Para </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>selección </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>los </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>artículos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>científicos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>se </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>consideró </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>las </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>12 </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>características
</text:p><text:s></text:s>
principales <text:s></text:s>
de <text:s></text:s>
la <text:s></text:s>
ciencia </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>como </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>son: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>ser </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>fáctica, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>contrastación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>empírica, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>objetividad, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>especificidad, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>aplicabilidad, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>comunicación, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>verifi-</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>cación, metódica, predictividad, utilidad, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>sistematicidad, legalidad. Se analizó dos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>estructuras </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>metodológicas </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>del </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>modelo </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>predictivo
</text:p><text:s></text:s>
de <text:s></text:s>
la <text:s></text:s>
ciencia: <text:s></text:s>
los <text:s></text:s>
datos <text:s></text:s>
y <text:s></text:s>
la </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>significación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>teoría </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>desde </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>una </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>concepción en el pensamiento filosófico </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de
</text:p><text:s></text:s>
Popper <text:s></text:s>
(1962, <text:s></text:s>
1976), <text:s></text:s>
Kuhn <text:s></text:s>
(1962, </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>1982), </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Lakatos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(1987) </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>y </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Feyerabend </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(1958, 1989). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Se
</text:p><text:s></text:s>
reflexionó <text:s></text:s>
en <text:s></text:s>
una <text:s></text:s>
simplificación </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>estructural
</text:p><text:s></text:s>
del <text:s></text:s>
probable <text:s></text:s>
modelo <text:s></text:s>
de <text:s></text:s>
la </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>ciencia
</text:p><text:s></text:s>
con <text:s></text:s>
basamento <text:s></text:s>
al <text:s></text:s>
programa <text:s></text:s>
de </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>progreso de la propia ciencia haciéndose </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>un análisis de las barreras epistemológicas </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>las cuales consistieron en lo siguiente: Las </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>George Argota Pérez - Rita L. Valenzuela Herrera - Gladys R. Huamán Espinoza - Rosa Aroste Andía </text:span>
</text:p><draw:frame>
</draw:page><draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>- Emily Hernández Huamani - Percy Gavilán Chávez . Kony L. Duran Llaro</text:span>
</text:p><draw:page>
<draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>331</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>| Campus | V. XXV | No. 30 | julio-diciembre
</text:p><text:s></text:s>
| 2020 | <text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>| ISSN (impreso): 1812-6049 | ISSN (en línea): 2523-1820 |
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>constantes preguntas sobre la generación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>y
</text:p><text:s></text:s>
validación <text:s></text:s>
del <text:s></text:s>
método <text:s></text:s>
científico <text:s></text:s>
y <text:s></text:s>
la </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>verdad
</text:p><text:s></text:s>
o <text:s></text:s>
falsedad <text:s></text:s>
de <text:s></text:s>
la <text:s></text:s>
teoría <text:s></text:s>
según <text:s></text:s>
la </text:span><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>aprehensión del conocimiento científico.</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Figura 1</text:span>
<text:span>. Selección de artículos científicos / año / títulos / revistas</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Se analizó en el programa estadístico </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>profesional </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Statgraphics </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Centurion </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>XVIII </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>las </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>barreras </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>epistemológicas </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>entre
</text:p><text:s></text:s>
la <text:s></text:s>
arquitectura <text:s></text:s>
de <text:s></text:s>
los <text:s></text:s>
datos <text:s></text:s>
y <text:s></text:s>
la </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>significación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>comparándose </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>mediante </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la
</text:p><text:s></text:s>
prueba <text:s></text:s>
t-Student. <text:s></text:s>
Los <text:s></text:s>
resultados <text:s></text:s>
se </text:span><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>consideraron significativos con un nivel </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Teoría
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Se analizó en el programa estadístico profesional Statgraphics Centurion XVIII </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>las
</text:p><text:s></text:s>
barreras <text:s></text:s>
epistemológicas <text:s></text:s>
entre <text:s></text:s>
la <text:s></text:s>
arquitectura <text:s></text:s>
de <text:s></text:s>
los <text:s></text:s>
datos <text:s></text:s>
y <text:s></text:s>
la <text:s></text:s>
significación </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>comparándose </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>mediante </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>prueba </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>t-Student. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Los </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>resultados </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>se </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>consideraron </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>significativos con un nivel de confianza del 95%. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>RESULTADOS </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Se muestra las estructuras del modelo de predicción de la ciencia para el análisis de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>las barreras epistemológicas (Figura 2). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Figura 2</text:span>
<text:span>. Modelo de predicción de la ciencia / análisis de las barreras </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>epistemológicas. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Se muestra las barreras epistemológicas según las dos estructuras metodológicas del </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>modelo de predicción de la ciencia (Tabla 1).
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Tabla 1
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Barreras epistemológicas / estructuras metodológicas </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Estructuras </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>metodológicas </text:span>
</text:p><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Barreras epistemológicas </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Datos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>1. ¿Se origina de una observación? </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>2. ¿Es orientativo de la variable? </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>3. ¿Pertenece
</text:p><text:s></text:s>
a <text:s></text:s>
una <text:s></text:s>
adecuada <text:s></text:s>
clasificación <text:s></text:s>
y </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>agrupación? </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>4. ¿Permitirá la comparación? </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>5. ¿Se reconoce para la evidencia científica? </text:span>
</text:p><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:image>
</draw:frame><office:binary-data>iVBORw0KGgoAAAANSUhEUgAAAKMAAAAQCAYAAAB6Ms9bAAAAIUlEQVR42u3BMQEAAADCoPVP
bQwfoAAAAAAAAAAAAAC+BijQAAHl1cmDAAAAAElFTkSuQmCC
</office:binary-data>
<text:p></text:p>
</draw:image><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>1. ¿Se permite la interpretación? </text:span>
</text:p><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:image>
</draw:frame><office:binary-data>iVBORw0KGgoAAAANSUhEUgAAAKQAAAAQCAYAAACY7tQiAAAAIUlEQVR42u3BAQ0AAADCoPdP
bQ43oAAAAAAAAAAAAAC+DSkQAAHwtV0oAAAAAElFTkSuQmCC
</office:binary-data>
<text:p></text:p>
</draw:image><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Barreras epistemológicas 1 </text:span>
</text:p><draw:path>
<text:p></text:p>
</draw:path><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:image>
</draw:frame><office:binary-data>iVBORw0KGgoAAAANSUhEUgAAAD8AAAARCAYAAABq+XSZAAAAG0lEQVR42u3BAQ0AAADCoPdP
bQ43oAAAAACODBDNAAFQl104AAAAAElFTkSuQmCC
</office:binary-data>
<text:p></text:p>
</draw:image><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Barreras epistemológicas 2 </text:span>
</text:p><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:image>
</draw:frame><office:binary-data>iVBORw0KGgoAAAANSUhEUgAAAFsAAAARCAYAAACy9dCTAAAAHUlEQVR42u3BMQEAAADCoPVP
7WsIoAAAAAAAAM4AGD0AAbIHam8AAAAASUVORK5CYII=
</office:binary-data>
<text:p></text:p>
</draw:image><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Datos </text:span>
</text:p><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:image>
</draw:frame><office:binary-data>iVBORw0KGgoAAAANSUhEUgAAAF8AAAARCAYAAAC7HnDpAAAAHUlEQVR42u3BgQAAAADDoPlT
n+AGVQEAAAAAAHANGU0AASbBbvgAAAAASUVORK5CYII=
</office:binary-data>
<text:p></text:p>
</draw:image><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Significado
</text:p><text:s></text:s>
</text:span><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:line>
<text:p></text:p>
</draw:line><draw:line>
<text:p></text:p>
</draw:line><draw:path>
<text:p></text:p>
</draw:path><draw:path>
<text:p></text:p>
</draw:path><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:image>
</draw:frame><office:binary-data>iVBORw0KGgoAAAANSUhEUgAAAGoAAAAOCAYAAADHRInbAAAAHElEQVR42u3BMQEAAADCoPVP
7W0HoAAAAAAAgDcXPgAB3cyitQAAAABJRU5ErkJggg==
</office:binary-data>
<text:p></text:p>
</draw:image><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Explicación
</text:p><text:s></text:s>
</text:span><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:image>
</draw:frame><office:binary-data>iVBORw0KGgoAAAANSUhEUgAAAGoAAAAOCAYAAADHRInbAAAAHElEQVR42u3BMQEAAADCoPVP
7W0HoAAAAAAAgDcXPgAB3cyitQAAAABJRU5ErkJggg==
</office:binary-data>
<text:p></text:p>
</draw:image><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Racionalismo
</text:p><text:s></text:s>
</text:span><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:image>
</draw:frame><office:binary-data>iVBORw0KGgoAAAANSUhEUgAAAHcAAAAhCAYAAADj7jRgAAAAJElEQVR42u3BAQEAAACAkP6v
7ggKAAAAAAAAAAAAAAAAAACABj19AAE/rS5NAAAAAElFTkSuQmCC
</office:binary-data>
<text:p></text:p>
</draw:image><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Empirismo
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>MÉTODO </text:span>
</text:p><draw:path>
<text:p></text:p>
</draw:path><draw:line>
<text:p></text:p>
</draw:line><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>CIENTÍFICO </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de confianza del 95%.</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Resultados</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Se muestra las estructuras del modelo </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de predicción de la ciencia para el análisis </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de las barreras epistemológicas (Figura 2).</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Figura
<text:s></text:s>
2</text:span><text:span>.
</text:p><text:s></text:s>
Modelo <text:s></text:s>
de <text:s></text:s>
predicción <text:s></text:s>
de <text:s></text:s>
la <text:s></text:s>
ciencia <text:s></text:s>
/ <text:s></text:s>
análisis <text:s></text:s>
de <text:s></text:s>
las <text:s></text:s>
barreras </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>epistemológicas</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Se </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>muestran </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>las </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>barreras </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>epistemológicas según las dos estructuras </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>metodológicas del modelo de predicción </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de la ciencia (Tabla 1). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Barreras epistemológicas para la arquitectura de los datos y la significación en el modelo </text:span>
</text:p><draw:frame>
<draw:image>
</draw:frame><office:binary-data>iVBORw0KGgoAAAANSUhEUgAAAlQAAAHaCAYAAADGytccAAN3IUlEQVR42uy9B3hUx9kGShIn
ceLYceJewRgQEkVdSCDUUEVCEggJJHoTovfeOwZMNUh0MJgOpmOKwZjeTBO9C1Dv0vbdd++8
Z3fEImPHTvLf//e9O3rmOas5M998bWbeM2fOTJUqVaqA8e2330ZiYiJSU1MxYMAAfPzxx0r6
n//8ZzRt2lRJHzFiBBwdHSvS/fwCsGL5l5g+bRbqODkr6X/84x/g4emMGTOnIDVtLurWq4k/
/knU8bsqqF27NiZNnIa01OVo6N0Ev6vyR7wkytR3rIkxw4ZhzuezERbeFH94+RX87k9/wz/f
q4peg4ZiwdLliIqNw5//8jL+8vKfUPXDd5DSqQ12bduAppEh+Ps//qbQf+0ff0VcQgzWrl+B
5nHhePvdV/DKq1Xwp5erIKJpQ2zctAR9+7VDjZpv4Hd/qIJX/lYFYaGBWPjFfIweNQLVqn4k
eBLpf30ZjRo1wqxZszBM8OXk5CTo/wG/+/1LcKjthLHjJuCzGbNQz90df3hV1P3HKviodg2M
mTYO81I/R5MwH6GHKiK/SP/4daT0bIuVqxeheatmqPJSFSX/h7VroUXbNtiwZTOaN2+O999/
Hy+//DLeeustdO/eHYsWLUKPHj3wxhtvKHp955130LJlS6xcuVK5X61aNSX9lVdeQWhoKD7/
/HMMHDgQderUwUsvvYQ//elP8PT0xJo1azBjxgxFht/97nf461//ioYNGyr5WUeNGjWU/KTl
LuQZOXIkpk6diuDgYEjfIE3SZpm4uDj84Q9/UNKrV6+Onj17YsmSJYiPj8df/vIXJZ08d+vW
DUeOHFHofPLJJ0r63/72N0RERGD58uVo164dPvzwQyWdvIaFhWHBggUYM2ZMhe/94x//gK+v
r1Lv8OHDUbVq1Yr8bm5uGDNhIsYLOzgIvqv83uJjzvWdMHPGdCyYnwZXj0Z4+Z9vCn3/Hh/X
r4HRs8ZhztI5CAwPEDL/CX+o8hI+fvdDpHTuqsgQ0zIaVeirwl8+qvk2ouNDsHG9SI/0x3uv
/wV/EnX//ZWX0aFDO8ycNw8dk5OFj71TwWvr1q2xdu1adO7cuUI2tpMmTZoo9IcMGYKaNWvi
97//vXLPz88Py5Ytw6hRo+Dt7V2hb/5mGu9R9/QLpru4uGDo0KGYNGkSgoKCKvLXqlULvXv3
xooVK9CsWTO89tprFW26S5cu2Lt3L1q0aKHQYXzvvfcUn/n2228RFRWl6Ju+QbvSvosXL0an
Tp0UX5S+RDvOEzKPGzdOsTvpv/rqqwgICFBko4/JvoG0aDfSYRkvLy8ljffq1aun5KXv+fj4
VPD66aefYvz48Up+6ot1kh/qlf3R/PnzFV6lr9IX6HM7duxQePjggw/w97//XYmU4euvv1bs
QVmlfWJiYrB161ZFJ6zP0l/9UdElfWzw4MEKf6yDNnJ2dq7o99gfUAZG/mYa7zVo0KBCZtqB
9qHctK20z7vvvov+/fsrdVPvlJn1sj0kCx+inTt27KjkY3tm+yHvGzZsQGRkpNJ+qA/yxPYz
Z84cxT5Mp454jzqj7qhDKRvrIX9ffPEFpk+frviS5MnDw0OhQ7nZ7m3b+rRp0xRaTKeNZVun
7ZlOX2Cd1BN57dChg6IL9mPSzvR/jhvffPMNoqOjFfuwLdAOtM/mzZsVmeljzE+/pD3pF4MG
DarwMcaQkBBMmTJF6QPY7mW/R1vR9yZOnFiRzsjfTOM9aQfqjm2PbZDp1Bf54T2mp6SkKHag
j8g+95///KfiK2lpaUhKSlJ4p8zUK/videvWKbKxL6YdaFPKsHTpUqUc+2zS4T32b/QL23ZC
+7Ot0w60m4ODQ0U7rF+/PsaOHaukUx7qW/o99UC7sY2RJ6azDbPvZB/KumR++hR537hxo+JL
Mp32YF9x8OBBpb+SdNiHt2rVSumj+/btq5RnGdonPDxcqdcWBzDSp+lfo0ePVsYc2UdTHtLh
OEoZqB9G/mYa7zG/9CXbcYY0aWPSon455nHso96lXmknjpGk07ZtW0UG0qfdOL6wb4iNjVXs
K/2S9uKY2KdPnwo6rJs+zXbCvpVjItPlWLlw4ULF/4hfaBv6Td26dUWb7it4nYnIqDD8+eU/
KONPFQrEjo0KohGpNDYk6WxUPPO0b99eMQDzUclk3smpLuJbJirxg/erKmVeeeUvqP7px0ho
1RwxseHi9wd4483X8OZbryuNJDamJdq26YS6ddzx4XvV8KZwTofqVdEiuhnatWmLevVd8Ke/
vorX3ngHVR2c4B8cji4pveDh7YO/vfYq3vjn6/j4/XcQEtAQPZI7CPDmgg8/fg/vffA2qlX/
CI38GmDQ0D5o7OeFmg4f4o23XsZrr/8eXg0c0X9AJwQGuaHaJ3/HP/4pZPvwNTEAOyK5Wxe0
bhWPT6p9jH+8/hreevOfinHbtGmjdGzsKF997XUlflK9BpLatEPnLt1Qo7YjXn3nbVT5yx/x
VrUPEZUQjbadW8OzQV1h7D/j9X/8AbUdPxAdix+6JreBu4+zGOD/itc/eEsBVB5+jdGmQ3tF
7xz82MBef/11pYOnQ7CxEWjRyXmfnSAbPo1PXdJx6FS0DxswOwN2pmzw7AhJlzIkJCQoAwvt
wwGHjkHwTOei0zONTs2ydECWYUcs+WEeDmYsw7rYuMgTQRr/Z4fKQZMNgE5IvtjYySvT2Qmw
DNP5PxsNZWCnS17ffPNNRVbpY/QvNgzKTl7Z4Fk3HZ0dMHXBuuNatUZY8xao5lQHb33wjgA3
b6DGp1XRKj4BnTomo3YdN7zxUVX8XtTxjsNHiGwTjcRuiXD1dlXkev2Vv8OpRm1EhoQpA5Rb
A1f87e1XhC3/KXzvXeFzjujUuSU8XGriw7dexet/EQP8q38V9glAkhgMGjRujI+qfqzoj7zS
PhwgaT/KTP3RTtQROwTqlg2RaWw/BEjUNe3GwYE6ZeRvpvEef9PGtA8HUNqBPkmapM+6SY8d
EPXt6uqq6Jm2YH5/f39F32zj1B3tQ15ZvlevXgoP5JVp0j4c6KSP0Y9YB+mSH8rAzpt0aD/6
GHXHdNJgXtqT/QQ7P8pB/6HNKAfLMi/9m+ns1Cgb+xnmZcdIPTIv+WF+gkHWLWWj7SgbZaLf
s4MmL6ybdAh4OBjQh1mefk//Z5tmOgdT1k39USesjz5MsPLRRx8pslFu6oYggX0i/U0CUv5m
Gu+RJm1GOahH0qZs1AtpUQ7qhfkJqmh/2p6R6dQ3ZWB7oWyUgffIE3VBWTigUGbWQ7vxYYWD
JtNlHyDzU4fUAXVKnlgf2w8HerZvti3eJ9+0D3VLW1E/1AX1ynTalGWpV+pD2k3agXxSR9Qj
ZSNP5FXqgW1V+j3TKSvtwLo5SPFBjL7JvJIW+wDWy4Gf9VFm9g9MJyiQ/Zt88CTgZb9A2dhP
0OcZ+ZtpvEcbUp/0ZcpDGcgTeZN9KGVmm2Xb5dgn+2LyQN6ZTmAm7cMrfYvthL7H8tST7Meo
b7ZH6oD8UA7amekEK8xPnVLnlIcyU68cZ8gr62BZAk/23fQ38kSZmU65SItyUq/sK2lX9p3s
Q8kDeaHumJ+80/eoC6Yzkl/akXajPcgjeZIgj/R5ZXnyRN+jT9PHqEOZLu1mm047kx75oy+x
v6KvSvvwN9N4jzRJg7xSF7Qx2wPtI/sA2on9Efs3+jl1QX4ou+SVMpCG1LdMp48RUDEv5W4s
+mz6Huuh/0h7ynGM7YG6oU6Zn22YspFX0qCOZJ8bHh4q8scKTNEYbu71BXYRIPPQoUPKkxOf
cNnIWIiNQiqcjkMnIyN0Cv7mlR29m5sH3N0aoElQmABILorDOjvXg6tbPQSH+MPZxUmJLq51
FOBDAXx8GqGxb5AAMl7w8WoMT1c31HOsDR9PD/g39lMAVbUaDqjn6gEfv0Dl2iSsKVw9vVCr
tkiv6wR357po6OUuyrgJnh3hWKe2UIg76tarDac6tRDRNBh16taCo1N11HaqKsp9AA8vR4Q3
9UWdelXh4l5dACwHYZzacHWpg6BAf6VDo0yMNDJ5ZWNiB0kjMo336JR8Ig4Wg3B9N3fUqFcX
1eo4oGb9OnBv6A5ff294N3QWuqsJ53qfoKF3XUHHGYFNvOHsVgc169ZEPS9XOHm4w61RQwG+
LDqlQVknGw95oQOxsVKn7PB4ZQwMDFTykycOKCzD/8kn/5cykA5tx0hakgZp0n7skJmPdJjO
jpEykgYbIPMwnT4g62JkHjYa+gqdmFfSZz28Z8sbZZLppE96vEdnpsNTlyzPOkiLPsb7bIiS
H/JImalz0iNfMvoF+MPFxxt1he+4NRD69HBG/Xp1FNp+/sGo7+4DJ3dv1BT0a3nWh6ufBxoE
esPdW/hcnbpwqumIxg0awVeAdTa8+u5Cb66OcGss6Hg5wF2AcPoIAZWXs+Df4VPUEuDfy8sD
jQODUNfFFc6uLoqMrJN8U27KQJmoc/7mlbLRVtQBeWfnIW1H2ZnGfIz8zTTeI13mI22WZV30
D+qC/0t7064cFPib+RmZh1H6DCM7M/JGGrwy0g6yHtKhLliP5JN1M52yMZ35GXmf5aXdpI1J
h3xIX2BeXkmD9pb+QR9lftKX4JxtTtYhaZB/8iv9gfRZr/R/3mM++iXL2srMMoxM5+BNHbF+
6lf6N/NRZl4pg7QD6UvfZJR6lf/LtsGBkHXKNkZ+eGV50mQZ5mMblTJLm1FOtkXqn+n8X/a7
LEN9MI0ysB6WYXuT/iH7JOZnXvLBOqS/cDAhHfLA8lJ/tAOvLCfl4JXp5IX6k+1N2pt5KRN5
IH36Bsvwf/Ij+x3yRTrSF9h2eZUP56yL+mYZ23pJR/Y9pGNrO6ZLG/CetIssI33Llg6vzE8+
ZX/G/+mvsm1SLql3yix9S7ZNXjlDJu1M+pSTcvA+65C+SBpMo7zUIflmPczP+ukXsp1RLpal
LNQFo7Sz5JP2ZLptn8d6SZ+8yrGKPkt7kEfKJn1T2pL18EFMjmvMx3uyT5BjvGwvLEOZyYe0
K0Egr+SH95mPvJAOr6yX6cwj9ST1Q1qUTbYf/mYa77Fu6kD2Y9Qj24nUvexPZT8gx0HZ1sgH
wSt1wzqlDci3HP/YBmS7pl7Ip/QfaXumUQbmJx3mJ18sI8cf2Q4Yeb9mzU+FXqoiLLwJJk0e
h737dqIKDUFiZIIEZMOhwERsRLaMnIbl0x3RHa986h05cjT69hmIMaMnYOCAocp06tChgzF4
SH+MHTcSvft0F7/7YeAg5u+vlBk+fCSGD2O5Qejdqz8G9OuPlO7d0KtHT6UOpZ5+A0SZIRg+
YpSg0U/5PWjIYKV8v379MGSwoDNsCHr26K68orLQHS746o0BA/opwvXq3R1du3UQ165I6dEJ
/Qd2x5BhvdGzdwdx7YlRY/qj34BkQWeQMm3IpxCCSsrGOhj5BE/Z+SqAsjGSP+qAZQYNHoqu
4nfKgL7oM2gAeg8Q+UUcMqQPhg7qiYH9u6Jf7y5KHDxY8DawN7r3TkaXHt3QvX8/DB87Fn36
9VWmajmdztcFrIuvGRkpE1E55WPd5I9TleRR5mMZaRfyxN+ST0a+LiF9ysMynK4lXdbHMqTJ
PJIW5WUaI8tI25MH1s3I34ysi/ds+aU9SJt1kh+ZT9ZPeqyPdPi/TJf3mFdeyR/pUwdSD7Iu
8jpg0EAMHTkCfQf3R49eKYrN6Wek2VP4Vu8Bw4RthqL3sBHoM2IIegztg14DhY0G9kH/fkIW
+lyfAejf2yLTgKGizKBe6Cl8pfdA4RujyUNHjBreD6OHDcCA3ino27O7oC9sMHAQ+g8eotiP
U92cnie/5JO6owz0H8pFWakXKRPtQx5Zhnmlf8m2xt9Mk/aWcss8pCvtI39LX6Vu+bqQ+VmW
+uOVeakz5qOdaB8+CVraTV8lsizrZX2yLfBpXv6WtiEdRuaT/QJ/S1kpo8xHXqRfMS/rY17y
wbz0EfLGumW7Yz7pD8zDe7Y+SB1L/bHd0t+oX/JJuZlf1i99iHn5xCr1x3Yg9c08jFKH0j5S
b8xLG/Nq+1vpi0Re6eekwTKsV+qN6fyfv3mfZcij9HHZbmT/wrzklVG2kcp2YX28spzsnyij
1J/UpdStpENbsA7ZX9IHeGV+8ku9kp6kI20s7S15ZmT9LCPTSJ95yIfUK21CH2M9rJezIdKu
jOSHvJEH6lP2FUyjLRjJm6xT8s28su9gHtleJF3ZnniPepR2kmMX+ZI6sW0/Une0r237kT4u
2wHvkQfqV/qBbfuxbXO8Sp1Kn7fVFa9y/JFlbP1d6l/2e/xf9odyLLLtM6X8Uj/8n/RpA1s5
aDvqgfcor2xD1K+sS8oiy9i2cf5PvmR7l3zY1k3avE8bSFml3NK/pX5pH5ZnGUlLyk160i9Y
r/RhqQPmk22H/PM1KSPLyHGua9euFW1P2kfyadvfSP2zLOlLv+R96of/046cFHB1dRZgLhie
Xq5wqC0ePB1roAqntuQaAM5MEaVRKL7jzsvLQ35+PoqLi1FUVKREpuXk5KCkpATl5Wrk5xWj
rFSDnOwCJT07OxPZOU9QWlaIgsIc5Vpcko/CwnyRvxRqtVopV1qiRnZWPrKyshSapF1eXg6V
SqX8Zr2sg1fe1+l0yr3s7GwUFBQoecmXTmdAcWEJykrKkZeTq6Tr9VpRLhdPnj5EUXEeMrMe
CV6yUVZeiDJ1AYrLclFSnofsvCdK3sysHGRli7TScqU+ysE6cnNzlbpZD//nVSVkyM56iqdP
MhRZsvJE/gKho1KhD1WxkLdA8J+FksIsqEoEr9kZKMh9LMo/Ve7l5mXi/sN7yMzNg0qnR54o
q9FoFNqUTeqZdcs06qGsrEz5n+mUsbS0VOGTV+ZnPqlHmb+wsFCJzPP06VNkZmYqZZiP90mL
/7MMdcvIOqgDRspMusyr1WoVukzjlXRJT9KxTSMN8ih9h/dlHqaTJvOyrKQp/ycP5JdlZd0Z
GRkVdZHXZzzkQ60VPJcW4GlWBnJynwqblKOwqEToV9hLa0BWsQpZwq55GhUKdSKWCR/Oz0J+
dhaKBU9Fwn75uRY/L9UIXsrzkZH7ANmFT1CuoQ/mwKQXfBXnIj/rMUoKaJdC5BcIPavUKCgq
VGSUspE3yaO0IX/TV2T7YRrlpU4pq7Qt78n7TOM9qStpH9kmpH0eP35coTv+zzz0J5Zl27LV
LWlLPnklP+SLtKhfec+WPsuyHH/b2ofpzEMZFN2JNLZRSYu0mV+2W9mejUZjhVy8L/2R95jP
1m+l7qTv8D7zUmbS0+v1Sn7Zb0i/ke2DZViWdUnbML/MI/sZ0qSuJI+yv5PtUepK2sc2TbZR
qSfZjzFNtknqiGmsg/VLHvg/6VAH0idkGuWxbWuSd/5+8uSJQle2V6kvaR+Wkf00/5d9BoOk
QR8xGAwVfQ91SrvZ6oX3eZV9iLQPeSF9pjOvrJ++xPtSH5Rb6tJWPmkzXqW8zCt5k7olT7Kc
9CfyK3mmXOTL1tbSV2Q66UpfkvYhn7I/Z9/C+9I/eOV96aOyPch+ivxKurY+yf7Vtt+TbcZ2
zJT2lJF0TCaTUo+ka2tLaXtZt9QB7US+pa5l+7NtP7a+Q53IfoG/WRd1y7Yp+wzmZbrUldSt
9FPKYNvObNsOZWOUfsIodSV5k+1BRknbVlapK9nubMc41i37U5lfYgHZ3zAyv/QTaVfWQ3lt
x1LStB23JO+yb2QZ3qedSZP/y7aUnp6urM+aNWsGwsJCUMuh+rM1VJyR4lQ5p7A4Tcp3tkR7
O3fuVJg3m81KZOclf8toMJhgtv0TaQwmk0H8FvfMBptossbnaRlhAipomn4UDQLwGA26Cvom
k1nJL6OZ/xst9csrHcWWnrhhuQo+no+m52ihknw/jj/m7/lyUma9JcIaxW+jrtxGD7+sPobK
aWyAP3f/pyLLMf6aMr802tJ8kZ9U5vvXxp8ua4LRpLHq+3ndGkXUiai1iTprupIPIr/pmf+y
AdIfjIKOUdCDiHqT2saWwqdM+hfaj/w987kX64d6IZiwTWdj/W/a4UV64qBY0dZs6pd2epE/
/Fq+LG3+x3WzA3qRP5CPyrr4T6ItLdvfkqefs80vbXe/hpef8tefSre10U/V/Z/wRN+ubFMG
2uc/aZe2kYNU5TSpdwIUW15eZKv/hswy/Jwvs076pMz3S+S3tY/t758qbyvvf8N+/43+tHL9
v6av+G+01crh3+H7RTzLvvWn5CRIqmz7yjb8tZGg6tSpU1i79kukpCSjWXQEnF3q4OOq76PK
7t27lVXynCLj9CwBFae3Dh8+/ByDRHCScSlYqXjyN+gFowZbQGUxjIVpAYgIhsTVxAFJDFal
pcXK7FFFp6tRK4Oc3qgTjbJEyW/Qq6FTlSqDnqZMPMGLMqSv1xst9QkQVVyirgBUZr3laiJG
En/qcs1zRqCDG0xGFJcWKYNmqaYMesGLxqBHqVqj1M9oMFto60Q9bIiUgTKzYzAZ9Zao01oG
YxFZIeujoXQaLXRawZNeJ6Ko36BVBmCjVqXkVZUUKuCQEFKv1VV0QuRPPi1WdhTbDkk6hgS5
rJM8SpvYdhyy0yJNhTdBh1cZKqdJWqyHkfdYlrzxnrQno8zHqwRpsm5Jz7aDlQ5MnmSa7HDY
oUs+K9cpByapI0lf8mDRmQ6FRVni/+IKQKXwp9FZoKwVRJUJ4F+kEbbWiLI64ZM6cVfY3sx6
hC2E0S1P1HorqBK+SsCdX5gjfFsDVXkxNOpSBdjThopPiPJqraaCRz4d2TZgKYdtx165Q6DM
jLwn7SFtI9PkbxmlPqXuGaVt+BQl9SrrIz3KZqt36o6/SUvyK+3GclKWFwVpS6VNWOsmHT7Z
Mdr6oJxZkP4oZ0jkE7707xfZX/quLTCz9TXpY3L2R8omr3xylWXk7JmkxTzS72W7s8xs6ytm
vWzBUWUAaOuftvwwTT7h2uaXs0PS3+X/5EO2vcqdtrSLvMe80t5Sn7za6kraQ+rSFuxWBlWS
V9ZjOyDJPkD6qnxYkH3UTw2MpFXZv1mGaZY3Cbrn5OJV2oplJb9ylu1FQFMOiDJKuSVNmS7p
y7ZUGUjY6sH2QUf6Pe1nq2M5k2TbP8oZPNv+WNqUvif5te0/WRfrtm2fLwL7DM/6OEOF7Wzb
hG3faOuPL7K/bX8sdSv7cds2I3mWaRJ4soykSVvJPMpDqI1d5Oyh7BukXn5u/JF82gJtaR+p
L1mf1LWt79ja09aWUk55lXqwHVdtZbYd32zrfBH4on2PHTuGVatW4LPPpmHO3JlYsXIJtu/Y
gipc8MVFXVzFzq9cuOCR7xK5WF12fJXRoWRSiS/6s84k2c4kaCtmaAwV4KqktKBiECOgUqlL
KvJwILPMJDybReDrPWUmSlHesxkqg1o0LrUR6hLVczNWWq1e8KqB3mCZSSouL7MCJyhXLRuA
3lQBqIrLmff5mSOL3KaK2ScFLFkBlQKazM/4M+oNVvktaRx8SwuLnstjMhihUamf01Xlp7bK
T9nSSW3z/prZjhc5hUyr3AnKQdO28do2vhc9Lch8th2zLbCoDPQkr/z/p2a0XqQLdgrPy8Lf
AiwbSgTYtYANtVpbMUNVoiqHTgBpAmWtgfUJ+UzP/JTgt6ig8MedmV4CUt2zK8w/Ao1SFgkE
Kj8RyQZaWe+/ZgZIDpovmhGy1bt8vfIiMCcHip+LEnxUnnWw9c0XPQHa2u9FoLFyXtu+o/Jg
Upm2BH62NG079J/ybUa+Oqjcycq+S9Zr+7RaWU5bv37RE3XltBc9xcs2w8HX1m+kPJXblK0+
pC1f1D5kmgQ6/0qHlQHoi9q8BHa2M022APmnaBN8/Dv+bVuu8mBq24Z+bubCFpD/qz5PttMX
9Zmy/cp6bQHJT+myMo8veiiWrzIr8yWBsS3wqKzvF83ksKytff7VTK/tw8GL9P6i8Vzq1NYX
K7cfKafMI+X5d8afF8UXzSra6l/6feU6bW3yHEaxTghV1qd8iPpXflNZN9QptwRKTV2I4cOH
ol37RDQJ9kdjPx8un6pSsf8EV/JzMToXdnH/EL5z/PlgGaB+MkI+uVhAEl+jyFc0Au8LkCUG
QgFrGA1GMTAaNc+9IpQDGYGUyXYgtPltNlhnqWzTTKgYAOXrGeUlj/n5yNkLteH5tDKNXgAr
8QShMzz/qk9QMOnEk62IZpPO8irPqH0O8Mm6lVdrRmvHKWfuxP+cGdFbZ0QqZPlfDr92qva/
Xf4/Y16vACq9vrjiVRzHLUujMCh+ZXllJ+wh7KxTCaupBV/G5zvlyuCQaXqt4dlTXqUGZ9vB
2IM92IM92MP/N8OLHib4gHr8+HEsXboY8fFxys4CyvopRm6TwP02+KkjPyUkoOIrP85QySm9
fxtQmazrrKygRG9QCSyhUgZBGY3GUiXq9aXQ6cuV2SvLjJVA46ryCjD0HGyRAIqgRSPADV+h
cXaIAyARp9H0I0BlrASkKkd5T85WKQDMZFRmlOSaGxgEv5oyMQoL1C94NevVltdAFTM6UF4Z
mmD+0dosmWY7MMtXD/bw7wMqmFVQa4oqwKvJaLYAVvqXqQRGbQHMBMF8LawR93WcJTQrM5H8
KIB+xnV8PzXbqtUIgKV/ZlflanoxIP531xPYgz3Ygz3Yw28PUHXu3BEhoYFwdKqJqtU+QBXu
3sqdWvkJK7dJ4OZc/KSQM1Qvemf+awHVs1dEBmi0pTAYy61giteySlGrrF0xmn88m2S0WYQu
101Ba7SAJ86AmQzPXsXh2WJ01ktgpBUDp9qoV17z6SotWFZzZkrQU+P5ujjYWtadWxcxc1aK
C5M582HSWq7KzJs1v2Xp8o9AG+lyJkxvQ9vy2lL7v+4wtmtxXhT/p8v/Z0GAHWMZytRFwq9Q
AagUW5lLBNB+CpRmQJefiZInhci9X4qsB2rk5QBlmmeL1OmqyhoHrfA9jaliTZ4FUPF1NZRX
hnpbUMyZSKP+ORl/LaD6n9ePPdiDPdiDPfxPASp+6ffZjCn4fPZnSFv8Bapwt1fu7Ms1VNxg
jjNU3DZhz549yvvD/xhQVaw9EWBGVybATakoVga1Nhe5eXeQ8+QyHt45jRvpJ3Dt2jncuJWO
Ww/u4VFOPnJKdeCSbp0VrOj1z2amzFox8JULQGPkjJQGZq7REvShLoOmtBCFeZl4mvkIj588
wJ2Hd3Htzg1cvn0D6fdu427mU2QWF6FAo30OUJUIcVXiqjVZ6lOWY3HmyyS/2COQ0kBdlIXC
p/dRkPkQDx7ewa37t5F+8xau3LiNa/ce4n6W4F3wVsx1O+bno95mFkwZlf+POMxv8ZWfySyA
skktbFemgFjAMvtkeR2bA03eVRTcPY1rx/Zjz+otWDFnHZYt2IadO8/i1uMixR46qx0Ufg3W
Dxz0Vh+zvrY2VgL2FYBKp1Vmw34NmKq8Dsoe7MEe7MEefpuAatSoEejXvxe6p3RRYhW5BxW3
teeuoTxGgBtkcYZKLuT6VYDKaBNNtovUDZZ1UgJQlauzcfveWRz7fht2b0vDV8unI3U+z4ma
ggUL5yJt9Sps3nsAR85fw+3MUpQKWirrouIKQKXSCUBVbnn1ZihVIjQFKC94iscPruPKxdM4
eeoIli5bhHmL5mLq51MxbvokTJo1DXOWLMLKTeuwYfduPMwrQnaZDqUGC7BSC/oao81sBKwz
Hnq1oF8igNRDXD17DN/v24GDu7cI+qlYsHgh5qSlYv6y5YLuFuw6ehynb9xFemYuHglQWCho
qqyAqsRgRKGmXEAzo1CRybLUzA6o/m1ApTPrhV4NFYDKoDMKXyiDufQOcm8dxJndi7H6szHo
k9ARzRrFoWmTzug/eB52fXcZ+YpdoNjBbLbxLcMvAFT8MxoqAJV9hsoe7MEe7OH/X4AqIaEl
3D2c8eprf7GsoeJ5PPK8KW6zzm3fuYbqwIEDyqr5/xRQycXpJmVPA534txR5hfdw7OQurFo1
HTMnpGBo7zh0bhOOpNaRaJkYh/gOHdFr+HhMXrgSu49fxcN8I4q1ZpSWWwc9Dnhlapi5JQFf
IZr4eicf+U9u4dyJ/di0binmz52MSVNGYtDg3ujRtzs6JLdHq06JaN2lDTr2SUbvEQMxePxY
TJufhqVfbcOBY+dx81E2Csr1ymu7ileM4i8v6wkunj2J7w/uwbavVmDutLEYPbAHhvRNRodO
bZHQIQnN2yShRfv2SOzRAykjx2L4zHmYmLoMi7ftwu5TF3AtKw85Oh2KDAYUCXBWbtKLAdoO
qP6TYOAMFbe/sNljil98mnXFMOVfQsa5jdi3bCxm9m2PhEbBaPCpHzzqxSCpwzis2X0aT3UC
4PKLONpBGKIkvxR30u/i4vEr+OHkNVz54S5u3RIAPasUJdoXACq+Wq6Eif53X4Hagz3Ygz3Y
w/9bgKpNm0T4NvbGRx+/hzfe/Duq8CRtnvzMWSl5wCG3XecrP356+N+coZKAKjvvJvYfWi9A
zwgM7B6JdjEeCPZ1gLeXA2rXc8BHtZ1Q2ycQQS07Y86qnTh/Nx+5ZUKQEjwDVKWWReFmVS6M
ZU+Q++gKjh3chnkzx6B7l1ZoEdsEEZF+IgagSYQ/Goc0VM5xc2vsCWdfdyXW8/WBZ1A4AqMT
0KXPUKSuWo8frt1R9iviDBX3Gbp/9x62bPgKI4cMQLf2rZEYG4EIfy8EedZDYEM3BIYGoJGI
noH+cG7cGLUb+qKmty+qN/RDdR9/RHRMRmcBsOauWY9vL15GBndb5zYSyozH/z6gkp/e/lT8
ny7/nwEqoNysV2b/FH1at9BQZizzf8CDE6uwP20YZvdpiw4B4WhSNxz+nklo12kyVuw8iwwB
kko4K2nUIjc3H8cOH8fCmYswou9oDOs3FuNHz8QXC1Zj++4juHE/E6U6K9Cm53PNls1XnHKr
ArlvmdyTxXZvFvkJf+XNWe3BHuzBHuzhtweopk2bgomTxmLK1AlY8MUcVJFn9HDvKZ5UzTNq
ePYNAZXc2OsXA6oXzE5VDDjQKVslEFDl5N8RgGoj5swZhvFDEtG7XQASm9ZDZIAT3F2r472q
H+BdRxc4BTbHwM9X4dCVLGSUmlFQYrQCKgPM3F+DgEpdKH7noeDhTRzbuw1zpoxGr86J6NCm
BTp0aIWExBaIT4pDXLuWiE2KQXhcE/iFecFDALg6Hp/CxcsDDi6ecAsMRbehY7D1yDEBespQ
JgbAwoIc3Lp0DotnT0didFME+LjDx9sDHt4N4B0YgKDoaEG3gxJbtG2DZq1bIrhZODwDBKjy
cMWHdevCqVEQfCLj0b7vKCxctx2X7j0G5/10Akxx7Y9UncEaLQCLchqVTUAZAeseNiYZjZZ1
Xda1Xfzaja+/LHQs67Rslucr9yStChoEBAQA5eXQqSwbI5ZptAJM6pUjWxgJLOWrtOfr1VmX
3+uUDS816nJlI1a9NZKeRqWFivuDWTfY1FtfmZmsa9Mg+eEWBAov8hWb5Z5JymSVQSLPit3n
TZb/+KWe2rrOTidocFmT2STAdpEArydXYu8XA/B5Sjza+QULQBWKRu6tEd9mHL7Y8B1uFxig
FjifvGfcuo0tq9aiT8ceaOoXjqjg5miTmIzWbbtjkgBZR85cRW6pBQjrlK9XbfddM1le/+k1
MGgsutCUFaO8rEjZrJZfq6rUWoVXrfV1csXHCbCDKnuwB3uwh98ioJo4cTzGjR+lxPETRqPK
Sy+9hNdee03ZOoEnN/OVH8EV11BxA6t/CaiML4g2r/qeHcmiV77i49d9OkMBSlVPUFx0B5fP
bsO5g4txcusUbJ7fEx2b1YOny0f4x6c14RzbAYOW7saWKzm4mFmOfJXeup6pRAxgYhjVaaxf
zotBOb8YqkePkXv9Jh5euIjrZ3/AxTMXkH7tFr4/fRrfnTmO4+e/xbFT23DixGpsWjcCQ/o3
hb+PI2rXc8RH7q4I6Z6CiRs2Yv2JYzh+8QyyH93AvpULMKJdCwTWqwVXRwd4Bkeg+aAx6LNi
K8ZsOYwdJ+7h2Nm7OHP2Ik4eO4Q925Zh4shuiA5rgIYNXODjEwh37yi4NkpAu+4TsevgD8rr
I6OCUCygQW9dGK+2giplyOUeXCZNxZE1XNSvLhUArETYpLgI5uIccZ+gkmchZeHGvav44UY6
bj8pxLWMUtx6olXWhZUbzcpxKmYIXYnB3qzVWxZdl5Sj+P59ZFwSejr6Hb49eAgHjp/EgQvp
OHz9IS7nlCHPxF3GuQ+YXFvExd6iTqOo31QAkzpTMFyKvMyHuH3pFNJPHMbl7/bj3LeHcPro
aZw+l46z6Q/xRACRcrNlHZmKYIQAj4bj9hMCeJhLBZh7qkb2vQLlXEbl2BfhJyXaYgV26bi+
TSiHIE2ryodOXQBVURnyMwpQlCH+L7HMTqmUNWpmy/5UJel4euZLnFkzFqkDkpAc3hQhbqHw
cI1FQofx+HLnOWTkCfD4JBult2/i8u69mD14COIaB8DHqR483Dzh1cgfXk0i0LJzL4z/fDn2
Hb+BC7eKcFuIzZmtIr3cxkOAKVUxSoQecu9dw+NbF5F+7nt8f3gPvj20DxcuX8LZK+k4dema
qLO84uvScsGrsnO79Wta+/YK9mAP9mAPvx1AxVd+Hp4ueO3vf7Wc58dF6TwgmYvSeZ5fQECA
MmPFnUD/9ZqPn1839YwJW0BlWZiu1uZBrXos/n8Kc+FZ6G5vwe1vpmNaryaIi3BBLZ8G8Osy
CP2W78H6q/k4n12OPLWVhoFH0XBvIe2zL7N0NlFjjVrrDusGvXUTSO5LdAfled8j/eRCrJyf
gqgQNzi6OOKNenXRsHNnjN+2DZuvXMSpG+eR9fASdiyahP4xfmhY9W0416wBr/AWaDluLobt
u4S0y4W4V24ZzC0Daxk0WZewZ+109O8QiejghmIAbwjHOkH4xCECES0HY83Wk8gpkQvSdRWA
qlyJlnVByiwQAZWy0allc8qyonzcvnIJV48exeldO3Fky1f4fu8mrP1yEZauWIAZX3yG2UvS
sHzzXqzedhRfH7yM9Hv5KFJZv6zU5qPg8W3cvXAJFw59jwObtmJjairWzZ+HhdMmY/LESZg4
cy4mLlqJKSu3IHXXUWw9fgWXH+QjI7PEskUFd4YvzoQp/zZUjy/gzg8H8e3+bdiyfjW+XPg5
Vn0+Fcs+m4gFkyfg88mfYdpnC/HVjqPYdTwdR689xA8PMpFZXGIBeAIwoTwb5oInKLx+Hce3
HcO6tK/x9ZY9uJR+FXkCOKm52Ny695MyM6mUE2C86D4unTqNXV/txJ5VO3By/wXcvKfHgyIz
MrWW2Sqz6g5yLqzDmS9HIa1/K3QND0OgWwjcBKCK70hAdQZPcrV4dDkd6Xt2YeO0qRjcMh4R
zi5wq/4pHGrWRnUBrGq6+8I3ui3a9R6HGYu3Y/2eSzhxrQiPhX/dzzOiVAD5rJtXcenIPnyz
aTXWLZ6LRbMmYsakERg3bhjGTByLqXNmY+aiJViy/mscOHkFP9zOxp0nArCWWXbqtwMqe7AH
e7CH3x6gat48BvWdnfCXv/7RsiidC9C5Zqpr165o1aqVsn0CARUPR+aRCb8IUL1gh/QfA6pn
BwdzLRV3TAdnOsyZYpC+AP2tLbi+eyrGd22McL+a+KCOE1zju6D/sj3YeDVPACo1cjTWQ3CN
ZVZgpYfAHDDxSBFtpV3TlWiCrrwQRlWe+F0oMFUmyp+cw81TG7FjxRhMGJSIyHB/OLi745/1
3eDftSfm7j+CI48e4urjm8h6chl7Vk5Hn2gfuL/zChzeexsOLj7wSUhBm8/XYeL2s7j0UIPi
IpNlPY2pBPrcq/hmwxwM6BqHmPAAeHr649M6AXjr0wD4RvbE4g1H8KhApyyk1pp0Fa/7NEo0
Wl7P8dWaMhtkPZjXrMHNi2fx5YLZGJ+SjM5Nw9HU2wOBDUUMDYJXkB+c/RrAh9texCQiIrYj
knsMR+qiZXh07woy7pzG1dN7sU2Ar2mjRqF3lxQktWyN2KZRaB4RivAm/ggKCERQWCSCo1sh
uGUnRHfqj6Q+ozFkynys2LATt+8/Ul5lFT66ifSjO7EjbSKm9G+HjonN0SJagMewQLSMaILE
qFBxDVNoR0cnIDYpGQnJQ5AycjpmLF2DExcvQcs1TuZ86HKv4cHJ7dizZB4Gd+iLpo1bIb5F
d8yYuwwnLqXjSZEKOQIkFZfK4zZKoNPexoUz2/DZxNFIbNYKrcMSMajXJCxaLYDb6SxcyFCh
SKeHruAqMo6vwNlVI5HaLx5dQsMR4B6G+gJQxQlAtUYAqsd5WuzdshVp40ejV7NmaFq3Php8
VA213/kIH79bHe9+7IQPHRuihmcEHDxj0DiyG7r1n4qVW47g6qNCXLp2C1uXfYHUMX0xtEs8
urWKQnxUEwQGNEKjwMYIiGqKgOgYNGoaA++waEQmdkbvERMxde4SbN51GLcf5dhnqOzBHuzB
Hn6jgGrSpAkYNnwQ+vbrqcQq3NRzypQpypd9nTt3Vhamjxw58hfulA4b8PQ8kKrM0PPASkY1
zJoHMD49hpJLX+HStgkY3dEHYY0+xQdODvAQA/vAZbux6YoFUGVrlJXAMCm7rVuPALHODhmN
ljU0+oovsQhwBH1jsQAnAlDpnsKQeRm3jn+N7UunY+qgruiYEIUGjXxR2ycAdUJaoOP4z7H1
4i1cK1XjYUkWCovv4PQ3KzAxJQZRrtXgV6cmXJw9Ud8vGiHdRqPblCXYuvcEjh09iUtnjuH6
2cM4e3ADFs8Yhk6tIhEZFgyPRiGo7RmOaq6RCGszGKt2nsSjEkBAQmWdlsSgemWmimvWjDZr
nKDISVB4/vAezB7WDymRYYhyd4Z7zRrKjOIn9T3wsWsDODZqBO/wcPiGRME/KBKd23XBvOmT
kHf3FC4dXYsv5w9XQF6zkCD4+frDxy8QjQKawLuxDxo1bgh/f38ENwlHkyaRaBgQBU+/ZnD2
j4ZXeIIAQ5Ox55jg++kT3PjhBPau+QKz+iQiyb8+/L1c4VyvPuo7OcLb3QXBvj6ICPRDZEgI
opu1QGTzdmjRvi86D5iM6YvW4NiFiyjjhwQld5B38xuc3zkHaaO7I94/EvU/aQxPjzgMHLEA
+0/ewP18HQpVZqh1ZsvxMqYnUJWdx7cHUtGza2t41HFBrQ/qIjiwPfqM+wpfbL+Gg9fykVmu
gTr3Ch58vwSnlw3Bot5x6BASisauYajn1kIAqolWQKXGvl07sWjaePSJj0Osuyd8P6mFOu9U
Q40P66CGQ0NUqxsKp0at4OSTAN+mXZHcdwLWbN6L89dv4MCB7Vg0rg+GJwajVUB9RDZ2QSNv
V9SqWxs1BUh3DwuHa2gE3MKi4B4ciYDmrZHYvT/6jpqML1ZtwalLt+wzVPZgD/ZgD79RQMXD
kSdNHofJU8Zj9pwZqPL666/j7bffRrVq1VCnTh1lYJWHI/+yr7SeLZr+OYZeeMgoN8rUPoI5
6wRU6Rtxbed0TEwOREyTOnBwq4+Att0xZOl2bLmSpQCqTI1l0bXBpLV8Im/dHZugSsUvtkQs
N1le+fB1mgKm1A9hzruCnMv7cXJrKtImDkaPhBg0adAALvXdUdcrAH7NO6Lj0JlYuO04fsgx
IosHmgrQpjfnIfvRcXy9dDwmpLREr5ZRCPcNQL26DeHgFQHXoBZoEhqJuOimSGoeLgBaU3RN
4FeA7qjnWA21Bcio4doQTo3FgBrVGZ1GzsX2Uzcsn+vzMEe9CRYJ5CJsnWV2ymh+FgkM9aVI
P7wD8wYno29EIFo19IKfhyecvfzgJgBPRJeBGD5nIRZv3oqV6zfhq9Vf4tvtm3Dr5B5kX9qG
XcsGoU+iFxo7vwXHmh+idv36AiD4om5AIDyDAxEYFY7YFs2R0DwezZs2R5PGYahbvyHer+GC
j1z8EJTUFeNSl2LNjh34cmUaUicPxdRO0egc6IYGjrVR26Eu6tV3Q3BIGDp16oARArHPmzUd
q5Ytx6ate7Hjm9PYd1KA05vZyC5RK7vi6/J+wOPzX+LcljGY3S8WMd5+cK7uB3f3RPQdvgzf
nHqC+wVmFOskQOZht7eh157G4YPzkSzqd61TT+i5IUIje6H35O2Yv+cBDt3RooB6K7uD3LNr
cGrJIHzRsznaNgmFj2s4HN3i0KLTRHy1QwCqAg0KivJx4+pZ7Fm7HNP69EZS4yD41nBFAydf
+PomwN2vPVp1n4nh0zdhxZZT+O7MTdx9komHmbex++vFokwLJIfVQZP678HH5RO4edZHnQae
aBDZFLEpKegyfBTGLliEBV9txOpd+7Dj+DkcOH8Tp25nC9BugEoPO6CyB3uwB3v4DQIq220T
3nzr9WeHI7/55puoXbu2Aqj45d8OMXjyxPZfDqgqR0uQ67BeuE8RAZXxKcy5Z6C5vhXpu2Zg
XLdgRAU4oUa92vBL6IhhS7Zi2+WnuJBVjqda63ExPHJE+doKytoeQ6kG5SKqdMaKDRhN5nIY
1ZkofXweTy7tw+ENc7FwfB8M7JSIZk2C4eMdAN/g5ghPSkHfSYuwfNtZnLyhQrYYwEvNlmjg
cTh4ijuXduPIxi+wftYEjOiWjNiQZvDwCkKNOq6KMpv4eyCgYX0ENXRGaGMPeLo4oVatGqjt
4o6PnRugYYv2SBo6GdPX7sSJu7nI5eyUdWGyZTNJY8VXc5av3iyvL2G0rs3SlCB9/wbM6h6P
zqKeKOc6cHGqj4+dvOHdogd6z1ylLCTnInJ+pacRIMGQcw+ae8eRvu9zpI6KQpTnK6j+ZhW8
884reK/mp3jXxQXve7jDJTQYQc2jEZ/YGkkJrdA6KhZN/UNQv54n3vzQAW87NoBbdCJ6TJ6J
OavXYHHaAiybPgapA9pjRMtgRAhg6u3pi0Z+IYhtnYT+gwfh89nTsXHtCuzfvQN793yLw8fT
ceJqAa481iCfR7vw2KGSH1CYvgZXt4/E571CEEOA+2lj1HNNQPLgpdhzOhv3BKDKKpaAKlvE
W0I3Z3Dk0Dx07RAJDxdXeHtFIjJ+BHrO2I/Z+55i/x0gR+jOVHIHWSdW4kTaAMxPiUGiAFSe
bmFwcG2J2I4TsW7naQGo1MrXlpwpzb2Tjs0L5qBnpJBfgMlwnyhERwpbJ43FuNkCCB3LweNS
y+asytFCwooXz27B7CGtMCCuAZp6V4ePe014NHJHo6ZhiO3aGT3GjcH4BfOQtnk9NnyzD18f
PYYjV2/j1KNCXBW08qw79NsBlT3Ygz3Yw28PULVunaBs7Pm3V1+2rKHiNgnNmzdHXFycEhMT
E5Vz/ThD9a/3ofrXQe69U3mgUAYRDb/Wy4Q5/xx0t3bh+p75mJASgdgmLnAUoCEksSNGL96I
HZcyKgCVyvxs13Gd3EKB62sMz87z49dj2RnXceOHb7Fh6XQsnjEEg5Lj0aZ5COJbxiKmZRJa
dRuIwdPSMGPldjHQ3cClOwY8zbXsyM7d0gmltGbBuzkfqqIbUGVcRv7lk7j8zS4c3Lgeq5am
YfKUcZg1azwmTRiMHt2S0DImAuHBgXBzc0MNx3pw9PJFQMs26D1tLpbsO4JDtx7hgRoossqg
AAUFPBmVL/qUaLAAKpM16rQmGEtzcG3vl5jXvTn6BLmhnZ8PgvxDUd+/Obzj+mL0kp24VqBT
FrYrNPmqs+gRss5sxfV9n2HZ2Cgk+L8B1xq/Ry2Hd1DTQ/AW7A+X6CiEtWuDpJQU9OrXF/16
pWBAt27o06Urklq3Q2DTOAS36oYOI6Zi0Y5D+F6AgWvXruLeuaO4vmMl9s2fiAVjx2DkoJFI
6dUfXXv3RWdBo3O39kjuEI+endoiuVMKeveZgMETV2LOqgM4evE2istyAQGoVHc24PHhaUgb
0gxJTRrD152vSFuj16hlOHApGw/LzMguNVoXsQtAhZswqU/j4N7ZAlBFoZFPQ9RxCYVf7FB0
mrIf03dlYtct4IlG2DDnJu4dTMOxRf0wN7kZWjUJgbtrGGq6EVBNwPqdJ/FEAKo8damyHk+V
+QBbFsxG9/BQxLo2QKxfNJpFdEarTpMxfv4B7D5VhCyt5eMBLb/CNBegOO8C7p/ZhtPb07Bi
3niMGtEbyX26oX2fZHTo3xNdBvZCx96dkdgtEdGJzRHToT3aDR2DlM+WYMrXp7HvTpnyVaId
UNmDPdiDPfz2ANWgQQPQtVtHJLVJUGKV9evXIzU1FWPGjEGnTp2QkJAgMg3Cvn37UF5e/kuq
xM+to+J5gBwwbNdOKQcla1TQlWbDkHMVZTcPIvPUBpzYMAND2jVBaCNH1KpdE8FxSRifthZ7
Lt7HpcwyBVCVW2ePVBJQcbd0dZGIxcqeVLq8DNw69x22rVqI2eMHoUNcGJpH+MHTzRFuHq6I
SmiNTgNHYmLaOuw4fRMn7uTgQaEZ+cVmFIurlp/nW18fErSVGQoBU54AOQWCfg5MT+9AnXEL
D6+fxeGDW7Bm7ReYM28SevTsjGgBUIJDIuDjFwzvoEiEte6IflNnYc2RY7hSWIIcs+VVX7n1
iBvI8+MM1vMIKwGqiq8HDaW4f3gjFvaKQ79gd7T194G/fxicfGMR2nEUZq07grulVqCp01oA
lSEfOZd24sL2yUgdE4XE4Hfg7vgn1HB4EzU9neARE4qI5E5o3q0rug0YoMwsDejfCyMG9sbY
EUMwdOhwdOs9GCNmpmLWl9ux9/wt3MstQ1mJACClQh9Pr6Dw7AEc27QO65cux8xZczFs3AR0
7ZOCmBYRCPJ1ga9rHXi7+sCrQSQahnVHm76zsPLrw7j/9D7K884i//pXuL5zPGamBKF5Ixc0
cPFGXY8wtO8/FRu/u4TzD/Nw+2ke1NoyFBXcxJP7h3Hn6jYsXTgEUaEib936qFkvCN7RQ9Bp
6gHM3p+Pg4+ELbnvVeFDPDi8HEcXDsTsbjGIDwpWAJWDWws0twKqp4UaAdhKlIX/hvyn2Dp/
JroH+yHO3QMxjYIRKPQbFtsPAyatx5bvs5DJV7XCHvmqcpjMxdCW34G5MB2ax+dw/cIhbN++
FvOXfYFxs6agx4h+SExui7g2UfD2c0F1p6pw8vGAV0wCPJN6o8WElfji0HUUGe2Ayh7swR7s
4bcIqKZPn4oZM6divngYX7J0EapUrVoV1atXV46d8fT0REREBIYMGYL9+/ejpKTkX4Mp0899
6SeP4jDAaNJav1izbH2QnfMIVy8cxffbl2HzvOGYO7gtRnQIRXxAHdSr8RZq1KwG54Z+iGjT
DR0Hj8PERauxevdB7D99ARfvZuBpqVZZgM5jRsyqLKgfXsHpHasxZ0gyukT5oVWgF1qF+sPZ
oYYy8NbzaAivkCg0bSvuj5iMUQtWYuaarfhs6VeYt2Qz1n15DEf2PkL6OS0y7lgAlgKojDoh
itqy55MAVDnXT+Pw1qWYN6M/hg1pi5i4IDSLb4qoFtEIbxaLps0T0Ta5P0ZOnY+5qzfi5J2H
uJqXh0yzUQFTKvOzw56Vg3wrAyrrKz8DF9hbQZeuOAvpe1ZhVtdItHb+CCFOn8KjgR9qN4pC
QMs+mLXqG9wt0Cj8Wma9uNg/F+bimyi8vh2HN47G8B4BCPJ5Hw6130YtN6GTYA94NgtAnADR
XXr1wZARwzFu4ihMmCSu44dj9PhxGDlpOsZ8looVmw/h+KWHuHk3G7fTb+Lq9wdxastSHFj6
GdZMn4DZo0di5NAhGDRsKHoP6o027ePRNNgbfu71EOATCA/PCNTyTIB/y0GYsXwbbj15CJ3q
Jkoe7kHO6ZVYPrItQl0+Rc2PPoCDqzt8omIRJ3jqP3kKpi1YgFmzZ2LmNMHbyO7o0y0aLSK9
BVBzRI1PHfHupw1Qy7cT2k7chbkH8rHrmkGZSTKrc/Ho2HocXjgMM5JjEeMbAA/XUDh7t0JU
4ggs/+ob5JYZkV+uVhb+lz++iz2LZ2OwAJpxLk5o4iwAnmsjeAXGwyO8C7qMXILULaew+8Q1
3M7OU7Z1SL92DD8cXo9vNy/EyrTp+GzmWIydPh5DJo9Bz5H90aV/Mlp1iEWDxs6oVf8T1G7g
hmo+AfjArzkC+87E5I3H8LhYq8wE2wIpeUyNHVTZgz3Ygz383wVUXbp0QkhoIBydaqLaJx9a
1lBxc0+5hiooKAgDBgzA3r17UVBQ8PO1mX5mU0+TLROWY2fkPlQlZZk4d+E7bN6wGEs+G4ZJ
fVqjZ0t/JIW4IcDlE3z6wev48KN3xSDkAp/QKATHt0Niz4HoO24apqcuw8a9h3Dhzn3klxbD
oMmDNu8m7p3bh/XzRqNnTEP413gDzu+8irofvQ+nmnXgUKcBHL1C4RbSEgEJXRGbPEiAtDHo
NXoS2vUUA1/3QRjcZxbmTt6Crat+wMlvs3HvvhHFGjOK9UboYNmEMj/jJk4d2IS0WUPRLyUS
CQkN4dLAAfV9XOHm20j5wi6hY29MnrsCh87eQEaZAfeKypCp06DYbFKOnOGanecO4+UuErav
/CSgMj3bUVtfloMbhzdg4aAkdA2sjxhvF/gGhsAlKBatksdg+aZvkVGkUdZkGa36VnYL1zwR
9G/hzrn1SJ2RgvatGiEg0BkNQzwREOePkKRIxCYlol3nbujRrxf6D+uHASN6i9gX/UcMxoBR
YzBpZho2bv8e124KMJlVjse3H+D8t99g+5JZWDyuLyZ2b49B7RPRvUM7dO+RjG49uyKpTRyi
wxojuJEXvJwbwN0jHC7+bRHZcQxmr96J9IwMqDQPoM45BdXNA9g6ZxhahzRAvVof4pPa1VDD
wwmeEQGIbNsSrTq3R/uO7dCxXWu0jY9ETJgvfN2d4PhJVbz7TlVUdfKDS3A3dJu6A0sO5eDg
TT3yFEBVgEentuP02hlIG9EdSU2bwcs9GO7e8WjdZRw2bD+GIrUZJWoF2sKU+wRnt3yJBf06
oW9UAGJ9PeHt5gEnjwBUF/yHJA1B38nLMHPZNuw78QMu3b2NYyeEHlbPwgrhD+OHJaNnbwFO
+6ag88B+6DSwNzr07Y5WXRLhG9pI0KkDJy83OPgGom5EK8QMmYUpa/cjSzwYcJf6yoBKth17
sAd7sAd7+L8JqFq2bIG69WrjpT9WsayhIoDiQvTGjRsr16ioKGULBb7yY8H/FqCSM1NGlOFJ
5i3s3L0eM6YNx5g+7dG9ZSjiAt0R1cgVfmIwdXH8FHXrOMCzgRd8AoPRKLQpAqNbIrpdZ/Qc
NgaL1q7H2Ws3UKgpRUHxAzzJOIcz336FtKl90TW6AZrUfR+NHKqhsbMzXOo2RH33UDGgt4R3
RDv4x3ZESFx7RLRMQmRcAlq2boO4FkloE9cLA5NnYM7Erdi27iIu/JCPp/mwnrlnkSE/+4Fy
XmDqvFEYPiQByT2i0KJdDNr16I7+o8Zh6tzFWLF+L46cvoGH+drn1ntpFTBlgF4AS8uxK/Kg
ZyugkovSTZatIEw2gMqgLcKDHw5g89xRmJAcjz4CaLTu1BHRHbpj3PTF2PftBeSX6WwO77Vu
pMqVYOZMlOVewOVTAixumI85cydi0KjeSEyJQ9PWYWiZGI9WrZOQ0LY1WraPR8vO8cqrqs59
e6LH4KEYNXEWNmzaj3u3cqEpMqI8qxB3zp/BvvVLsHT6CAxr2xzdY8MRHyVoxcUgoXUcWsbH
oEWzMMRGhqN5dDw6dhmM/mPTMHP5Huw7exOZ5XxlVgiz9j7MOem4sGstPh/VB93axaJZ8yD4
RXjDL6oRwhMi4Bvkh+DQEEQ1jUSL6GaIixagKjQMoQFBaOwbjMCmbRDTcSTGpR7EtpP5OHcf
yutas7ocWVeO4sbBddizdDZG9+6H2KatEdmsK4aNWYjDJ26gTCdsI3c7LytC9rlj+H7VF1gx
dgAGdIhDZGgAGgSEoE7jCATEC0A6aDpGf74SWw+fxtVHT5B+4xJO7f0Su5ZPxYyxfdGjRwcF
AMZ06oSoTp0R2akDIoRem7RohuBY4Svt2yJ5yHCMn78MK/cex+FL91FYplFei1duvHZAZQ/2
YA/28H8bUA0Y0A+JSfEIauKHxn4+qMIz+1avXo3JkycjJSVFOc+P+1D9old+/wag4td32bn3
cODQ15g/dxKG9uiI7gnRiA8PQouIYMSJQbhZRKiI4YiJaYZmMdGIjBWDW3wrtOzQBX2Gj0bq
l2tx+spV5JXmobD0sQBol3H+5HasTZ2MkT1aoX2UHxLCgpDQLBbh4S0R2qwDwuO6I7J1L0S1
TkZUfHtERguakc2UgToiVAzUkR3Rp+sEzJq8EV9vPo+r1wpRWG5Z62SwnruWn5eJC+eO4Ott
y/DlqmlYsmIa5i6ZjzXbtuPY+au4+7QQuaVmlOjMz86XswIyLqxmVA6JxrPtHuSZepDbJsAC
qKg/ZYm9AEd6UynyMi7jzIH1+HrZbKxcOBNz0hZg+qLF2L7re1y78UQ5I85ofnZGnOWMOTFQ
a54KVJghrk9QXpKBu/evYs/BHZi6YBx6DumKTl3aI6ltIpoJMNQkOhTBzcMQ0yEeHfr2QN/h
IzFzThp27/4OT+7nwyz0YS43oPTJY9w4fRRHd6zF7OF9MKyLAKSxTREbFaHYLC6uOdq1TUJy
1+6YOycVm7YewolLGbiZrUWOxgIwBYKBSZ+lHGNTfD8d577dic1rFuGz6UPRrUdrwU8IQqOb
IDRS8BPbQtDrhJ4poq6BAoQPH4vxI8Zj7KjJmPRZKmambcamA+k4c6McdzMFeCVI0gs+H93C
0yvHcePYAWxftQbTx36GiePmY+OWI7j5oEj5AMEoZwp1wmKZj1B0+STSD2zFhrSZGDdqIFqL
9tCsbRck9hiKvuPmiLo2YP+pK7iXX4LMvCxkXT+Jq99uwIYln2Pc6EHo1LM7Yjt2RHBiWwHC
WiMkMQktunZFj2HDlNeXW/btx6U7D5QvDLNLtFDzIG7rmZn2NVT2YA/2YA+/HUC1YME8pIqx
+Ms1K7Dt602o4uXlBVdXV+UcPxcXFwQGBiqv/A4ePFjx5Pwz1f3LNVRyQ09Yd0gnsNLqSnD3
3jV8f2QvdmxYjXWCsaXzF2DJolQsW7Icy5cuw4oli0VMxZLFC7F4aRoWr1iNZes2YNPuvTh6
7jwePH2MUk0J1NoClJY9RWbGdVwWYGff9nVYvyoNq5cvEUBxDZav2oglq7Zg6eqtluvKDVi2
/EssWbIMS9IW44u58zDn8/lYOH8Nvlp3UAC9a7h4ORtZuQZlsNUaLACFv9UGDZ5mZeDWnUu4
cfOsuP6AKzev41aGGFgL1crMSOXDb+VBwMqslHzVB+vBuCbrV34my5EzeuvZfvIAY5blrJbO
rEaZKguZj9NxN/0MrolB/9y18zibfhV37uWgpMho5dGk7LquN5igYDTlazTOUhVZr2potGV4
lPkQJy8fxZ7vtuOrTWuwcu0KLFy2ELPT5mLeskVY/NVqrN2+HVv2foPjZy7i3r0saEoMlmN9
tIJwcTFKMgQoSL+Aq99/g2+/XoevlqVi6aIFSE0Vtly2CuvWb8GOHftx8owAH4/ylTMBNWa5
Lk0DjaEAem2O5dWkrhiagifIFsDq8ukj2LNtLVYs/UJZ6LcobaGw10qsWb8J23fsxYH9R/D9
dydw5vszOHviPH64cg8XrmXg9oNSZOVA+bAAegtIMpWVoCjjNsqfPkTm9Rs4d/gUTn53Hvfv
5aFIZTmn0CABjE74Jr/4Ky0Ach/hwZUzOHp4D9Zu/AorN27G2m37sO2b75VDku/mlCgfRuhZ
VWEGiu9dxPUz3+HQvh1Yv3kT0tauxawVqzBtyQrMX7sBq7fvwu4jR3Hq8hU8zS2o8A2t1vIF
LKNcM2UHVPZgD/ZgD78NQBUfH4fQsCD4NPRUzvSr2Ifq1VdfRc2aNZU1VDx65hetocLPHTtj
++ri2dd9ltkq8VRuUKGwIBsmVRn0JaUCFJQLRjUoKdEJgKSBSqSpigugKS2EqrwYpWoVirQa
FItBiAvFDdYF7tCpYDZw7ZFI01sW+BaVlaO4XORVaVFYpkZhqQr5xWUoKCxGoRILFaWUFJUK
+moUF5SL+0bLmhoxShYJYKTWW2d6rIDQKPcf4ms8nRY6vQoGg04BT/JVmxIJqLizt9Ykog5G
JWpg1BtgnTdSdKOzbkYqZ/K01qNnCKwsu6Vbzh/UChCqNnPBuRpalEKnK4JWXwSVqRjlUFsO
LjZZjc7ZLJgEbwKc6QRpvko0WzbStMyZGZR8OpMRxYJGrjobeapc5JdxkXWB8gq11KBFubhf
ojOiUK1T1hgZK7425J5YgoZWRBW3ZhBATYBjQ0k2yguyUF5chNISoe8SPUrKBHgS+QtLTYou
pY5U+nIhd5EQu9SyHxX5435khnLLF5sqS4TwAYNK2FCAt8LSMhQJe5YIflSCH61agF2V0JXa
AiQJevUaAaAESOIJ02bds+OHNEUFlkO0NVqYCoWvFWoVEEs7lslNYCmbzmjZeoNfSeoFT9oS
lJfko7RcgCe1BqUqveBB6EZnUl4Dqyr2EdNbPgIQQFWvEmXKS4X/lSK3/P9h7z3Aq8qOdFHN
eMZjezy2x772jP08tmfG4zTjbF+ntrvdTTfdpIYm5wxCSCAUUA6ABEqggHJCCQnljBJICAlE
lACRlBDKWTqSTg7/ebXW3idI3e32dd/7vXe/2cW3OEdnp7VqhfpXVe0qBUbm5zFLVZxj8cHo
U6E1iCZZI6z/cWXvB8Rr++hcmhJJJJFEEv1/Bah27tyOn/7shxYfql/84hdghWmqXnnllQU+
VAx4fFyyjkHFBISQk81KqIiCDyIwMfsBQRRWTNhyTYsF1Oj4dyaEFdy0wwWomMdPyYUXNZoB
I42WxwzSgaXQkYtaGjVzWjIDIMJEUCnpqF4Ix2AKa2DymzLqFQROCLoQKJKT0J3Xkcxm2hYS
5gq5ll+r1S4UkELdSUzrTUVU0MHSTgYj5jSCMOd/8yKkoOGJnJk/lZE5mqsxb2QxpqgVvN5a
3nYWdFTHeICFgIrnBqRb6HViPTTzAlhhvBSBkU706ZLT/ZVGBYEDBQdtOpHHJo0cAyoaWEye
HKAxfhMw4ImnNQYOJPQsnphObW47c6hX6gXAYTJ5goNqNc93KORwFMEUf1FBLYCpWfptRieY
Fk0JrkVtn4Zrtww8mKtOZ+ABXXnCZtNY0YrJsDXip9h+sPqyPmDjTqMTztMJ91Oa4plBDKLK
CmubOaaZQTSdCvdi7dcZ9LyPWJ/I9GqLeZVpFWGwepNVBPziWFPRtYRFqTrED61V3knx/qas
BBKgkkgiiST6vwNQ2doewPIVS/Hjn/wnf9PP5t69eygpKUFQUBD27t3L41AdP378zzT5cciE
PxUpXYhBZRIQBFbkSiiVav6d/VPI5FyYmcAS02poRDOYAAKYBkBNAkfLhZleNG0JTtdaQbOg
EoQo9CbBa3IEZ8KSCT2FCKYEsxcTcibgxkIXaOgUOsMc44rHudKpSDyKwp7uotEJYRpMoM9o
MteJWjq9lmmldDBoTEFGrQCV4f3AkdVTrrMAKqHO3Fq1AFBp6LuSipyEuEoEkzojS64so3OV
wvOZVkxLvGFBTRdEojcKPOKgVMdBHdOeqUVAoSY+MMCmpPvIVDLIFLNQqbWC1kzU3HAAY+IV
Axk8cbMIXFR6UeslxhkT/zEfJu7wLTrWMyChY2EhOICSE89naGzJoNHOcXDITcFaOs7euFMb
FxbOH3AwpRI1cNYaHpVCCZ2K2qek69UGsW7gGkIzGGJjiZn0WL/ohH7TieNDZRTyP5rfulRq
oCVgx/uRgTmzZpH1pU40X+u4Kdb0wgKHXnoRcLLwIBCLUQgVotUpBcBkmgf6hWDKBKgWm/0k
QCWRRBJJ9P9fQHXuXBjS0pNRd6UKd++1CD5Uv/71r/lbfm+++SaPlu7u7s5NfuPj4//nK8xl
hiC8rYuw49ebi4ks/u7iMVMSYfGAwUrTJaSgMWl8hAIxATE/3co8qRMFq9Z8ndUzxOdb1+/9
5k2juT0fVkznLbgPhGfpxGL9XKGeghnQ+jj7zSD6W5nNrh/GX6s2LOC1EeJ9hSLc03IVrOpm
9Y6BpT16mPtoYS7H9/el0E69uQ94PywC4EZzUmijGfSwsrgOi+vxYTx/f5/oxSKMFetx8r62
Wd3bepxafjP1Cxb04/v4/QEbjMX8lUgiiSSS6P9eDdWmzeu4H9XvXvmV4EP1d3/3dzxBMgvu
uWTJEh7Yk2mo/rxI6RJJJJFEEkkkkUT/vQAVe6OdxaH620/+leBD9e///u9g5bvf/S5+/OMf
c0DFUs+wXH4qlUriqEQSSSSRRBJJJAGqRYBq//69WPLma/jOd/9NiJSekZGByMhIeHh4cB+q
bdu2cZMfi081MTEhcVQiiSSSSCKJJJIA1SJAdfZsKMLOBvEQPympCbBZv349Vq1axf2nWAyq
5cuXcw1VdXU15ubmJI5KJJFEEkkkkUQSoFoEqOzt7bB3305s276J+1LZfPKTn8RnP/tZfPWr
X8UPfvADDqzc3NxQX1//Z77lJ5FEEkkkkUQSSfTfC1Bt2rQBP//Fj/G5z39GiEX1hS98gSdG
/sY3voEf/vCHeOutt3jYhKtXr0o+VBJJJJFEEkkkkQSoPgBQ7d27G6++9jt8/V/+GV/6H5+H
zenTp7n/1MGDB7Fx40Yeh4q95VdRUSH5UEkkkUQSSSSRRBKg+gBA5e/vCy9vN178/L1gc/jw
Yezbtw9bt27FunXrOKhiGqrS0lIMDQ1JHJVIIokkkkgiiSRAtQhQubo648hROxy2PwiHI4dg
w3L4ffGLX+QmP5YgeenSpdyHipn8lEqlxFGJJJJIIokkkkgCVB9g8nvl97/GV/7pi/jM338S
Nl/+8pe5Q/q//uu/8jhUDFCxsAnXrl3jefckkkgiiSSSSCKJJEC1EFBt3LgeP/v5j/APn/u0
4JS+c+dO7je1bNkyvPHGGzxsAkuOXFNTI0VKl0giiSSSSCKJJED1AYDK09MdTs5HYO9gC7vD
B2ATFxeH4OBgDqJ2797NfamYyY85pY+NjUkclUgiiSSSSCKJJEC1CFCdOROIwNMnEBwSyIN7
2rCQCSyPH/Oh+s///E+8/vrrcHJyQm1traShkkgiiSSSSCKJJED1AYBq587tPGwCSzvz1a99
GTZ/8zd/g8985jMcVH3ve9/jZj+mrWK5/BQKhcRRiSSSSCKJJJJIAlSLANXKlcvxve9/25Ic
efXq1VixYgXeeecdvP3223jvvfe4UzrzoWIXfuQDoTcXmAtgMH5IoTPNn2LRUSXVVFRUlFTk
H1DmqcyKn3LxXHaNTrwHYFxQrwXPMx83naOnY1oqVG8D/SqebF0n03kf1LYF7afrjB9wrfk6
8TnWHLMulvsLxz7s+UI9hWLdxsX9sLiORvEk9qGjohU/Tc83LOLf+/vTwksdL0bx0/L7xyVT
P7F7L+4rg/jMxf344c/Wf0j5AP5b9RvnLT/vA343WPrG1H5LnxoXPtuoXfA80/gQCt5X3ld3
dr2p/Km6L+CD3lxM11h+Z/zTi322+DzT+Hj/uDM937pfDFZttczdRePQ1DYsrMv726kR56DV
mmDEh86zhe2CVV8srJd1f5nbZbS0yXo+MTKNZX6d3mgui9cw07iw/LB4TfmYC7f1XLeed9Z9
Av37+GBeJxaMK0s9P2jsfRjvJJJIov81QMV8qJj/1PYdm7Fu/WrYsAMFBQXcj8rW1tacHJmZ
/Obn5z96EdBraJKqqNAnNGYAYVqo9FQB68ImscpggIImuYa+T80pMEcnjtLfz5VA27wRt2VG
3Jk24oHciNY5Ix7R8Wb6XjuhQTP9fZ++t88Y8YLOHZTpMa8VFgatVg+NSg29Xg+qBZT0yUCX
li0cVisQW8i1RgXVRcUhjWnR0VJR02Kq0bPz+R2JgWpeYFBDp1dBq9dBqzPQd7aO0RnzWuiU
BqgNAsDTm5ivo2s083Stkn5Ti6uZuFhTe/TsGWzxNmg530yCzcQnfq6R4KJe5C2rj9UCyeqh
0Kgxr5BDp9Pw+1BFoNMq6TqD0C5T2yDwep7uJ6NjCtP9DZY+MV/BhA7vTyX/zuqtFwGsgi6T
i6CXtZXdU0PNYrxgPNfpdNBTXcxFq7MMSHObTAOU+kYt1FUv3svUV4w3euIRu6+M2jhLXxR6
oX9MgkJD16m5kLQCPQYdFY3Yb6aiE4tB4K9BrIsoDE0iTIQH/Jt1P1hxhv8tAH4NVHolNBoV
FHINtGqdINT4WKFBTONKS8eUcuKjVhTSOuMCgW3uS/Y8vYHGrhpqGi9q7Qz17Qw9S073YeNG
xxvH+Sb+M6FbnZ71HfGB2qmmc9UGNj5VfHzr6XcdXcv5RJ9q8VNDRcf7VeAJr4PIW51RQBY0
c3g7GP80pr6nc5RaA59fWrWGzxOV1TiA0Wq86fVm/qu088QrNee7AG70YrtmeRs14vU6zm+D
WC+BnwY9tUulEOrJ6k7je1Y5h3mNhj+XlTm6L1tLBOjH1iMDx4I0bKBSGyz9yOtDbaJRY9Sp
QIOPp9ZScb7QeSp6roJ1nVHoMw469Jx/OnG8mHhl6jfeF2LbdQY9LxbkIgA5tUYnrBVWc8D6
GojrhUFDc5faplXMQqeSC/PJyEeyZS1g/Uo80LJ5buIZ8chA/DXSerB4jeBFI449Pv4MC8ax
QryHRBJJ9JcBqtDQYCQlx6GsvAj1DbWw+c53voPvf//7+OlPf4pXXnmFJ0pmgT0vX778kZHS
+QLGhLlJ6DMYQ5NeZwWoNARy1CR1dVphYTAJcI2oaRqiq5pGZxF/5wk8q2/gSNkNHCigktOE
Q7k3sD+jAYcLW7A7twGbs6uxr5TOudwKt6p2hFzrxOWuCTyZVhBQEO5rLcB1VkLaYLWzZIu6
loSezqixCDsrQANR4HOgY7QIF7bYW4NDvgMUrzU9S2+qg0ErgikmNOZFAUwgQ0UCixZtnU4Q
7qaF0rTQmRdKUbiZgYH1YgmjGSgI54hgwKATPk2ASmc5n9Vthu4zSdfMsr6h/tAzuULtn9cL
QFIABexZcrpCwQGCWquAgvp4nhb/eVFDqLDWEC4CSkZTfcQ6cHDLx4BObK/lPOF5gvAxaSj1
FijIz9NYCW1+TG/h9wJBJ2pFLABK0PJo9AScDWqxTkbruxP+4ohfBDkGgX8G4TkmIQ+Dzgyq
dOZ2M0FtBUjM/cHGiVz8FI5p5+hTKQo2XiU6T0M81lpfa+Kb1uoecs5/BuIX19tamGtEQKXj
mwQ1byvBAF4/HQdSWuov6j8a73N0bwUVDQc0Wv5MnZraQ+NRLgIkoT/V5uebAJXGGmCKIFgt
jgUFB2FWgIMJdxGUMXBp4A03ipCHgJF+HkrdCG2kxs39LvCbzS+tWDed1VgSwQRvp84MpqZ1
Fm31AkBnMC6YT1wrS/NPr5HBoJwmpDVLfaLiIFZF91MaNSKgMi4AVGpa09hxXj8GXqkP9cQv
g0ZY3PiGSOwHtplgmxyjCKhYnwl/W+oGcR3i4EvHAKLWMnc4mFeLGyydea1UaCGua+y4Slhr
ed9a9Qlfb2jU0jwz0lproDpqacypqWho06mT0+9KrTDuaJyzO5k0/xKgkkiivxxQ7du3B0ve
fA3f+e6/4Zvf+n9gQ8T+48E9WS4/FjbB09MTdXV1kMlkf/phXE0uFoO1WQhm84xRLS5SpoVK
FIgqWpQG6e9qmvCOTU/w86gsfPVkHL5yKhFfPpGEr/kl4Vs+yfi2Vxx+FJiG79LvX/eLxtcC
E/ClUwn4YkAqvhuRjb1ljYh70IV7Mj0mmJbIsFAgm/QOhsW2R1MbtFb1stJUGGjhUmtmuUBQ
6+SYV87Q7lhGu3QNX8i0XDtj5ACJLcYKWiDltBhqmcaOi2RBCDDQphEFHdee6ESVvNWuXC/u
gk2gTCnuulUGnbhrNwi85rKGLZxsYZ2j3+b4zlavpHvPq/hiar17Nur05r7RiMJvThRAJuFn
+l0j1sUMqPRMOynshtV6JnTAd7WWArOGyGwGItDHtApMO8VimDEAyQQH0wQoVSSc1FpB82cW
Ikw4Ec/UBhIcRq5pZEJAR4KNtUmrVJh5wzQoGhpDhjk6Jqe/dYJ2DCZAbNXnsOLrnGoeco1C
6BdrzZ1OBDlsXM6xQgBSpeW/yen5sxoTwNOIjLf0j8Yk6EUesvGk50BmnsosfVeI2hIr7YBO
BFSsT3SC4DOa7GVmUGoFoDnIpvFD/NFrLQKcae6YhlRN45C1SyNqnfR8YOkE7RwEUGICVRoO
QoTC/6ae0zCgTDxW6gXBOisWlQhsDGwjoJ0zA1qdGbAIxj4Gjpm+R8E1nloOPjj4ZIVrTOap
OgRcaA4Z6Fl6UUtj2iiA7s80xLPUlllWB4Oea9kYKDSwjY4JUHHdEwEeg4r+V/Fz5PQL02pP
EV9mqB7zoubRrP3TCnxS6fTivLKAMg5YWNELfGLPU0HFQT80VmsBXcvGr8nkrBcBvdmMprda
M4yLgbHBsv7oBPCk07D7CZ9skyHsI6jdKj3X/Bn0oqYaOvMmQ2u1ueL3ZHzVEX80bD7pIKO1
h7VduRhQLtJOW+pr4MCL1U5ltALQEkkk0V8EqLZu3Yz/+uH3BP8pVn7/+9/jt7/9LX71q1/h
N7/5DfelYrn8mFP6RyVHtlaBcwOZWSO0yC9BZ7QAF/quoIXr5bgSV/tmcLy5E/8Vkw8bxyDY
uITg0ycS8C+Refh1Wg3eyWnE5rwb2F9+B9uKmvFOdjV+nFiAT506T+eeho17MIGrSKzJrULC
4360TKgwNKeFkrZ1Rp2wcDItiNn3x+QHYgWs9CbNATufdrFcEGimMTs9hMGRF3g58hKPXzzF
nYd3cPPeLdxvb0NHfx+GpmSYJhCjUmm4CYQJKf0CYSgsrBqxCLtutbCQG3TmHb5J06MWgQoT
FDKSTUwjpOTaByttidkExeo5QbechGpqAqNd/XhJoHK8cwjqaZUIMPR88RVarTNrV2aopsOT
oxjq6kDfs6foHBjFC5kcUyQ85FolF1wWrZxa1IJZNEILNWjWGqc/XfBB58MyJpiZTyuaQ4Wx
ohPqL5qvuDZAYwXMTeYyzcK/jYvMyzoOyAwWYGrS5rHC7ikj3vfKMfv8BWRdLzHaLUNvzzz6
xwVhL2hM1Px+Wt5HTLspaLLMZjyYBKnawjfWT9aASiuOMybUmOZCL2qwtIL2Q2sQzZHsd6a5
4Josg8XExEzEWgFIMnO2yaRnKiZTmblt0Jm1qtbnMZClUM1heKgPzzt6cPf5GO72qtA2bkQH
bW4mYRTHq2Dq1i026Yn1NkDYvAgmOwJrDPwx7QnTsugJkM8OQTXUAVnvM0z092B0eAzTM3Io
NRABglBntnn4UA0VjeG52RkO/rQ6BQbHaI63tqCm6TruP+2iua42a0thtUkQxhO4qZHXy9zv
Ji2kjrsqMKBnMgvDuo1Wmi5mRYaVaVxv2ijqLGNX0I5ab8gMMP45/6zm00Lt7kJttaleurl5
TPT1o+vJMzx/1oPugSn00Z5vRCWYZM2gHIYFc25Bu0T/LMmHSiKJPj6g2rNnF95bu4prqf7w
6m9hU1hYiMTERPj6+vKcflu2bOGAqry8HOPj4x/1OPMOXWt2KocodATnV+Mi3wN2zjAtRI39
E4i+/QxvJBbhsy5nYbPXG3/neBrfOJmAlZfqcObxMC6NqFEzqkXzNNAwpkFO7yS8bj/BzxIz
YePqRSDMDTZHvfG1qAzsr7uDjOeDeDAmwyxbtbkJUkF1UHDznor5czCtiigYtaLYYQJNEF4y
KuMwKl5CNdqOZ49v4NrNWhTVVeBSVRmyS/ORU5KPsuoKNNxqQVtnN7qGRjCvUnPfDnATybxQ
aBln91Sp9eKCD67p4lol9QygmIRMMY1hhQzDajUXYopF4MoEtia0KtqFC9ohjXnBpGdpB2FU
DkAx0If2hjuoy7qMG8XN6H00APmUQgCIXLAzM4Ja8Cmj60dmZWh72IqWy8W4UpyL6qYbuNHZ
g66JcQzJxjErn6LKys3AQK2Rc22Imvn5YJGJj/2tVXONFPefIinGtVRGi88I2w+zwn7nx3VC
MZtmlAJIYloYg8Fao6Pj9WZaMr3oY8YFmEnbqRHAMEzmNKuduX6BaVnHx6LeCnQwfzguTBXU
xiElxlu68Kz8Kh6UXcHNilZcq32K1seDGJ1VgulDtIY5KEmgy6mts3SdUk0bDWZGmTeatY0f
CKhEHxY2AAwqei57nlIhFIUKBqUBs3SPGQX1v0oYiwaTkFaLRWcF3AwWs7lJM6UxagSAZwJT
Ju0LNx0R4JDPcD8mk6M7Az1Dgy9x6/p15BVWIKm4Bcl1z5DZ0oeydpo/o5OYZdomZu7TzkGu
ZpowA/dJYt3BTUcqmt9UN5XWJPQFsKZlfndsjCsmoOp5gN6mKjyqKsEdmjPNDU242/oEPX3j
mJpTc78znc7woSY/5hfE/NDY+FIoZzEy2o+bd5uRfikdUclJKKmpx5P+UUzRWJo1GLg/2QIf
NaPgA6XQ0dxn7QGsACED69QHWhrnzI+PaX3EtYHPQYNgDmZ9x8xnbJwxE71G9K/k5nrTMSVd
q2LaYQ0vYFpY2mSxwr7z33Um/yax0N/smEalN2sA9UajeY7orUzac0rB1MjGytiLfjRW1uBi
YgYKssvQ2PwEt3rm0D4GjCkFjS2bM0a9QtRQWjRRrE3Ml4s9Q5QOor+nBKgkkugvBVQxMecR
nxCN9IwU5BfkwOZnP/sZ95/6+c9/zjVULGI686H688ImWLRTahFMyWkiM6ddNRVm7lKr5s1v
nrDFg/k6dVLJ6x7C0aob+I/gNNgcCYbNfn98xvYE/t39LOxKm1AnM6KHgS9awAjqYIYWsRe0
gBePzmBjcSn+1osA1VEn2LidwidCk/DqxQr4NT3ANQJqc1zw6LgfiIEAjpaKmoCVijvvYgFo
4f5VTJWuHIZR9owEbAv675egsiQZUYln4RkaiFNxMYjLTsfFkjwUXi5F1bWruP6gHa3dvZhk
JiWtjBYngkWsYEr0QRIU+CafI0E7NUM7937MDD/Bk55WND9vw5UnHbg/PIVRjUUFr+eChfmv
aDFH9Z0VTXVmJ1IdCS35CxhnuvDy7h2Uxl7EOccQJJ+8gBvld2nhneRmAZM/DjvfBDDG2GCg
+pckRCI9IgiZhUWobXuEjrFRDM9OcNOmSUNlYKYrcffOxTMTKFrBL07PfIAYMIJgRuAmX4Ng
CmILOwNgzFSoUCkJcKoXmkKstQAiYDD5t1kAlVrgo+icbTSZj+cFE52eCRq1CKjUi5yFuf8K
jT0Co8x3TSeav6wLN8Eq1FA+G0NHcROuRCWj7FwyLoUXIzu+DlfrHuLFwBiBYhnda9rKhCa+
XKATgZ1erDcXiApBw2kNqKyc0LVyOSYH+/Hy6WN0tbXhCQGMBwRinvYQsB7TQqm0Op+1SW5Y
oNm1NhXTqMYMAQIlc/jmAEoval60Au90TFMpOmEb1WbN6axsEvdv30RGQiLcPE/B5VwOPNOv
IaiiDWk3O3BrcJTGGgOgSmr3rJVzvlW91IJJTWMwgVdBC6vmgGqW5tEgxm4TOE2LQcm5QGSf
C0F6fAoKii/jVlsHxqbUZkBtMjnT1gcKAgJKnZz7vemp/swMplLK0fOiA803GlBG4CynKAcX
i4tw9eZdPB+awDgBsxn2Mop2kbO/caEPFTc1s02G+AKH2V+JAx7hRRo58y8kHs7pRY2oYeE9
IW4eF2uxBL4bhMJ8sZjpWNRGQk5rKLXBSPPAqFWLmnCD2Uyttp7X1g7rVhox/gy6TQ+Nlwvh
CXA5eAwnjp9GalolCm/0oqFrFgOzelHzx+bMLP/U802kyc9toc8jB1QGCUxJJNHHAVQHD+7H
ylXv4Be//Ilg+mP+U3/1V3+FL33pS9w5neXy8/Dw4Ln8mA/BRz7QIL7Nwhck5vyqoDJPE3me
Jq+C75CN4tssbFKPUWmlReJsWxfeTi/FPwQkw8bpHP76SCj+h0MofuUTh/CmDrxgTqcMpDEz
hwpcgDINywP67nGtGd8KCYGNlz9sAiJhExiHfw1JwfZsWmCe9GHSbKZQc0BlMM7xTx13RNfy
BVZr/YYS29XN9cA4ehPKx0W4X34OUWEusHXci7W2e2F3yh9hF5KQWZKLvPIilF6pRkPrQ7S+
7Bc1S3MEHgaglndAM/UMyrGXmJqQYWRKg16ZFoPzSszIRjE72oGRp9dxr7EQOSUpOHcxCc7R
CYiurMet7gFMsTcUDSqolWOYme7G8HgXRuQT6Jufx4s5HS9DdC+ZYobAxBA1bwRtVVWIocXV
9s39cN3gjvSzubhRexedT59gZIjqMz+E+ZlBrlVhYqR/YAhleTk47+4Af7udCI6KxKW6BrT1
9KB3lOogG4OWAUSNjAbOCNV7AhNTk1SXCQyOTWJ0cgazc3Luc2L2qWGaJ42WJ9OenpvH6PQ0
hiYmMDA2Qn/PQqVRmgGVXq3BnGwW03SfqfFZTA3NYXpERc8ggDBrgEpuEHb2OkHjp9JNQqYc
x+TkJCaG6NmDCmgmwR2DuZATNVwL3mSi52nk01DMESBSTWFewbQiExibJwGsoGeTYJsXd+dD
tzpxK6UE+T4ELt1DkeCRitgTeSjObsTjh91cywmqg0IxgenZcYzOjBIPJiAbncccgSDZtB7z
8wauoTOazLoEdNRzc5BPyTE+RPWfmMPMxCRedDxFU1018tJSceH8eSSeT0JETD4y85rRfLsH
w0PUXjkBvnk1FGNTmO4dhIZ4pByjZ9HzpsYVmJpSYUquh0wn+A7pTNoxg2hKVNPz5QS4ZQQC
Z8aJN7PcEVshG8cE9e/Th60oybkEf1cPrN2wE8sO+GJTQDpcMq4g+mobWgZGiDfggEo2N4JZ
hZzarRaeS8+fG1dBMWvkPm98U6IzWt7SZOZiBqimetFXV4SKIB+kuDog3OkIAQBPBIdF0riv
wt1HnZgcmYaS7js2paQ+oXVDr/tADVVX53PcbLmOmtoK1DZUo7axFtXXG3Gn/TleTin4RoP5
gPE3bwm0qOZmMDc1jrExGn8j4zRmabMyJaM+mqV1hGmIaXNB80c1Mwn55DjxiP6WyWhMT2GY
5mjf5CgGpqbpZw3XwDGtKdPG0WVQERBUUX01c8w/0BRWwyCCWJ3g6D49B830HNdACm8c0jEC
VOopGjPDg5gZGMDsyChUEzPUfhX6JxUYpHk9q7WY0pmukblFzMppM0m8nhxV4eXjl6jLr4Sf
gwc2vLUW+zfZITAwBReqn6L84Rh6JuQ0z5jGje4904mJ8ec0/3poozSMLppvg7SUTy96wUBv
kDRUEkn0cQDVli2b8NOf/RB/96lPCD5U7C0/FtCTOaT/8pe/5ICKRUpnb/lNTU39GYAK3E9J
S4ugkgCLnECUnGuEBEDFX+MXF36maRmg0kALlNu1dnwnOJVAUTRsnMPxWfcYfN87EZujilH7
Qsk1WWqjaVdMwlshgLJhKnEEZl6LT8Q/hYTD5kwcbLwj8BnXYLx2LgPRLc/RpReepeQ7Mq1g
boMp/IAWppestWYzGh2bfQ5j/xXM3ElFQ6YXfI5vw4qN7+D1Teux7bgrTsZGcy3VhUuZyC0v
w7W2x3g6SsKShMDwfB+eddej5XoWavOjUUQ784yUTMSnFeJKazcaHjzDvbZbuN9cjobieKSc
94ST9z6sddiFX27bjd1nonDpShO6hwYxP9WHiZetePbgMm63lCHlUiJic3MQlV+GxLJ6FDbe
QcuTJ+gf7aRFfhhPrlxDtNMpbP7FBux4ZTf8DgYjLiQZGcnJuJSdgOLcJJQUpKOpie7f04f2
R89QmJmOWAJUZ47uRXxyCiqabqG95wXaO57gfust3GmpR21VEbKykhERGYZzBLoi4+KQkJ6J
/JJyXLt5E086OjEw0IeeJ+3oevgAD++34ubNW6ipb0RxVQ1yS8uRXVyEhuZraLndjNb7t3G3
pRlXa6pRmJuHtNRMJCak43x4CuJjs3DhYjlKqhrR0tKGjudPMTbUjanpF6i5XoziK/nILS5E
Xm4xqooacKfpCTq7xzA2QYDZpKEyaXKYZk4+Bd3MABSTPXRuOWqr83Hx0gXEpBEvs7NxsbYB
1e2daO+dwPPGdlyNzkKmqz9SnAIReywRUW4ZyEuowcMb7Rh4+gDtLTWoKrmEpORohMacxdnY
80hJykZ2RinVqQbVtTfx6NFj9Pf1YOhlJ4GW+2ioqUPxpWLkXSxAVVkNtbsWRQzIhgbB85g9
XA7sh5PtMWzefhzO3gnIym3Aw3YC4qPTmB4axsCTx3jW0oKyDOJ5cjrS4zKQmngJBfl1uH7r
OTqHCbyqrbVHginJqFAQoJmEbnQQqkHq0+YG3L1Wixv11bhWXUlg+hKiQ8PgsOcAzfW1WHnQ
F9sCCVClVyOs/DqK7tzFnY5HaL5Vi+xLKQiLCEdYZBwiolKRTM8vzK1G/ZWHuPVoCo9fqLjJ
Ui9qmtT81X0S6pN96K6guno7IvnoIQQe2Av7Xbtw8PAReJ4KQizNjdKCMtRUEE/K6lB74zYe
dXViZHqEA9/hsX48f9aO+/fu4FbLDdy42cjHZdtj4uvNBuRXVqCu+TaeD01zPjzrm8DT58/Q
evc6Gq+WoawwBxnp2YhPykJlTTOabrWiq6uDAGEfZid6MfTiMdrv3sbNq9dQX1aBK2WlKCst
QE7BRWTkZFJfFKCg8goqG27jxagcPX1T6H3cj977Hei7/xx9j3vQ0z+Kl6MTBNxnoZMROBsd
xfiLl+h70oH+p538+/zICGRDA+h7+gi3rtagOCsNaTHnkRQejtSoaKTEpyKdQNKlmkY03GpD
27NOPOvsxYMnXbh5+znqGx+h7goB4II6ZMVnI8QzEHtWbcFbv3gdW1fsho/XeaRVEaBqG8Lz
gTEMD7/Ay3aab3XpKMqNQXJGNKKpPcmV9Ow71Gcvx/FyVgOZwQKqJB8qiST6ywHV3r278dbS
1/H9H/wH/u3fvwGb4uJiOpAEHx8f7NmzB5s3bzaHTfhfCeyp4+Y09poxexNHxbVBEMMBME2C
nHZc7C28p/R3Ro8Oy2MrYbPVDTY+52Hjfg6fc4/CUgJT5xu68WRCBFNM1S1XC4JCJ8QRGmUx
qWYUCLnfjncLq/CpE9H4ZEASPu8Rie/5x8Kh+AYaZEYMmjRcRitHZ43p9XUBqDHHVSWPmUOg
T9EJbWc5uqtCURrjAG/XrVi7YzUHVO/ZH4ZjwEmEJcUisyAHVY3XcPt5L56NzgihH+ZeorI2
GQF+O+G05x0c3LgMWzdsw5ZdR+AUeB6nE9KQkpGMlNjTOOd7EC52a7B26xv4n2tex1defRO/
2m6H00lpHHi0t1ThRmk8ilJ9EHvWETv3rMHSDWvw6qadWHnIDbs8z8CTBFxRfR1GxgbRfuU6
ohz8sOvXW7HrlT04+O4xHNntDEc7O9jbbsOBHWtw5OB2BJ8JQm5eEfLzihEXFoIYVztEexwh
0JRNAu0ubhNIrbhcjvTUBESdC4SL40G8u+JNvL7kVaxcuwYr1q/D2++txT5HR0SnpiCntAQX
SEBUlxQi/8IFRIWdg4+vP455eMPBzQN2Lq44eMwRnv7eiI6NxAW679mgADjZ22P39h1Yv3YT
lr2zBsuWbcDbKzZh0z5H7Hfx4gK36ko1nne2ofJKHjyCnLHp8Cas3LweOw/awe14AEJDElFW
e4N24ArICPPr502AisSDfJrKMGRdd9BYnITwUw5wcdiK9RtX4M01K/HWDhrjHgHwSitDZk0r
qnOv4EZmKZoSMlEelIR09wxc8M1HSWwNmgsb0Hq5AlkRgXDavxNrVi3FH5e/gSXvLsea9Tuw
bcdhHDnmD78TZ5GakoG6qstovlKD/Mw0+Lq6Y9OaTVi7aj2cHd1wLuwsgs6chOPh/di2dhXW
L12CVUtW4Ld/2Iylq4/CPzAJTTceovt5Bxpry5CfGoPcpAi42e7G9ndXYc3S1di26SDsbH3h
7h2HrMI76OzXcEd+5jgtOGPTPJmRQTc8gLHHbbhXXYrC5BgEe7vguMMBnPR0g7/7cezZvA0r
X38bS5asxqvr7bDZOwreGZWILL+K1AoC7tnJ8D/pgl271uHNd5ZhyfK1eHv5FixftRObtxzB
cc/zSLjUgppbI3j0ZBQymeALxGc7MzVOD2Hoajmqzvgg47gDTu7dgc2rVmDp8hXYuHsPjREv
nPDxhpebO1w8/HDU0xeRiQnc4byz9zmuXquh8ZKImOgoFBbkoav7GRRKGXoHe1B/ox6ZhQW4
VHoZDXdpc1DdSuDnJopoHGakReJ0wFEc2r8ZW7fsov5xgJNrEE4ERnIfh8aGEjy8V4P66jzE
nYukceECtyPH4Ed88XQ9Cge7vdizYys2bNyKbYec4B4Wh9yGe6i9+QiVuZVIPxONwrPxaCqu
RsuDJ3jU34eXvZ2Y7OvCaE8X2ppu0FzIxIXzcbhKG4rB58/RT8CwNDsNXsdssWvDSmyhsbNp
5XKse3sZVixdiZUbd2ObgysCzkYjM78IpRU1BOoKERgUBwfHE3A44g/no75wsT2OozvtsHvl
Ziz/zVJsW7kHAScTkVVN92/pxq37D9DSWImS1NMI89qJw/tXYsO2VXh3zy78YetubHDxQ0zZ
NTwggDiqFUJOMEd2CVBJJNFfDqhYHKpz4SGIiz/P1xibP/7xj3jttdfAPpcsWYI1a9b8+XGo
FkR81osBM4VierOOmezkBIz65UZUdSoReKULGzOu4ychhficTxJsHJjZLgavZNTA92YvavuA
l3IhdACPGcVdeCyxipg57xn9XjQig++Dbnw7IR9/fSoBNnan8En7QPw0OB37S1oQ+2AYVf0K
DNDz59Si8zOLMyNnfjjMuRbcEVrwOyBApXkBQ28NeutjUJ7gAg/nrVi14R0s27ENuz08EETM
yykvRXVjPZrut6K1m3aFYzIOqEbkA6itz0ToaVt4HV4HJxJE+3fsx35bN+xxOQmngHMIiTiH
uMhAJIS4IcTvEOyctmDFvnX4+ZadWOt2CqklFWh/dB+PGgtxOcUPsb5b4G67FJs2vo5Xl72O
H7+1Cr9Ysxtv7HLCHt8QpF6uxovhUdykHX64gy/2/HYb9r22D34HApAYmoqEiEj4eh6F44Et
cNi3Fa7OLggOOYcwAj5nvD0R634Emad9kZ2Vg9rG26i/fgOJCXFwdz5KAGwnDuzciHVrluHV
P76CZatXYTkBquUEtg+5uSEqPRVJeTkIj4mEjzMJJAJOXq5u8PMPQFBkLCIvZCA+OwfJl7KR
lJ6C+KRonA05Becjtlj37gq8/odXsXTJcqxdux2r1+3EsnU7sO7gEex0coeT/ykUVJWj9elt
lF0tgMsZZ6yx3YDl2zbA0csPyWn5qKy5gdtPezEyq4NSYaWhUmlgHOuDru8RepqLUBjnhzOu
23Fo9yosW/FH/JpAzC9Xb8Ybtp7YGZqFwMyryM+6jOrkPNTGpKAyLBUFp/Jx6WQpLgXnI/9c
BnKCg3H68D5sX74Ub772Cn6/9FUsWb0Ca0lg79xP4NUlAN7+YST8E5Gfk83NqSnno+Bm74T1
BKb2bDtAADAcZWVlKC7KRUTYKRLiB+G4exvsdx/C1m3u2H84FLFJxWhr68DTJw9Rmp+CsFNO
CPA4iN3rl2LFH3+HJb97DSvepj55zw57D5xBXPJ1PHyusMTtEgGVenAII4/a8KC6AgXxkXDf
vwN229bCg3ifHheDgqwMhJwIwJ5Nu7D8nXXYaOsORxovAVnlOJGajePBgThKQPvAwc3YuHE5
XnvrLby+fB3eeXcnVq+3xY69bnD3S8D57BYUNTLN7BzkSquYSMw+Pz6A3poSlAZ6Iu7oQUQ4
OxCgOIqjzk44ERqCRAKcsefPwc3ZEdt278emvQfhcfIECisKUd90BZnZFxAY4A9vLw9cyrmI
/oEX0GjleNzxCHmleYgg8HU2NgnRaUVIzm7EhZxa5ORmIT0tFGcC7WG7fx02rKcN0Tpb2Nqd
wHGPIK5pzcmO5pqb1PgQnCTgf2jfYezfewAhp08hMzkaF2LDEeTjhT279mPjfkccDoxCZGk9
0iuvEUi6gPCj3khx9SewfQHFtfWoa7uP+6038eReE+5fr0dpziUC8Gdwyt0XGbGJaLl6Bc01
lYgOPUlgagXefu2XWP7ab7Fu2dvYvmYtdmzeie0HHbHriBuOuvvAL+AMTgefw4mAUDjTmnDQ
zgNHjp5AeGgiUiJTcMbtBPa9twPLf/c2Ni3fDg+3MGRfvo/8q3dRVVONsuxYJJ8+Au9Dy7Fz
3R+wbNVr+OXSpfiP15fhN5tt4RaXjcsPaCM4pcOYRgqbIJFEHxdQ2doewKbNJBtXLMU7y960
+FB9+ctf5mY/5pTOfKiuXr36kcmRhcDGC+NLWYdPkItO6MzMVz1sgGPJXfyAQNQn7IJhcywc
Nj5xsHELxLfTCuDUPowSWpgf0bl9BkETxTRak6KmadwoaJ36qHRRuUXPy543YvWtDnw5rRw2
3tGwcY/A3xyPwD84ncMvQrNxqPgW7mmF4KE6U9RgtQis1GIEcQ4G5QSwemEYvIHhe7loyA9B
oL8dNuxYgx1HDsPz3FlcLC9H4917uPPoMVqfdKH95Ri6J+Z4kMwxxQiab5chOd4H4b52OHXs
IFztHHH0mC+2O3jD1jMAJ0PCkErA4nJeMioLE0mABhDQcsFW7xPwSMhC/b02jA70oKO5FCUx
7jjrvBpHt/0Ohw+sxqpNq/ErEmo/emcbfrF6P9476ofIgnI87RvCzap6JHqE4NjKQ3DfeBwZ
oRfR1vgA95qacTE1Fv7Oh7kAd3FyhrfPCXh6+cDT8SjCneyRepIAVXoO6hpu4Wr9dUSeDcO+
bZux4d2l2LJ2OTZveJd2+Zux99BB7Dlij31OTvANC0MigYbY7EwEhJzG9nXv4tDWLTju6ISz
56KQU1KJ+vuP0Nbbi+cjg6hrbkBOXiYBqhNwcTiINSvewSu//g3efnMF9u51gJPHCdi5+cHh
RBAcAoPhExaOwpoq3G6/hbJrxXANc8d7Dtu4L1toYgrutfdgdFqLMbUQh8hgHZZDPof5nkcY
vFODptwoxPjshc/htdi3eSneevv3+OUbb+CnKzbidztdsdonEY5RRUi9UE7AKwsVMUmoiclE
dVQVSkIvI/0kgUKPUEQ4HIPrJgIebyzBiiWvY8V7q7Bx704ccnaFm38wTgTFIyw8FSnJGdyU
WZ57iYRpLBeqdrts4e9zGuVlVRgYGsTgUC+aGi4jMzEScUGnEBUYhhMnkhAaUYTLNfcIOIyi
t/cZigsScMJrPxxt12DP5rexfsUbWPX2Mqx8ZyPeWboT69e7ITS8ErfuT3F/G3PIALUW092d
eHb9KmoyknHe2wW2JMhtt6xBsK87GqtpzNBmoKygCP4e/ti14xD22LvDLyoNEZcq4B+TiAPO
9ti8cy02b1mGDXTt8tVrafztwZbdx7Df3g8uXucQfL4AFyracfn2CHqHNdDorACVRgPtSB86
CVCVUJ+n+x1HTkQI0uJjkJSWjMsNV/C05ylu3apHMoGYLXv2Y93OvTjs4ozzieeRdjGV+BkE
t+NOcHZyRFRkONoe3CXe9KCipgzBEcFw9fPFMU8/HPMJRWh0KaKTS/kYKyyIQ3LiCfh5H8Yh
2yPYQ+Bv3wEf2B72hJPzEXh52sLP8wA8XQ7gmO1hHNxzCC60Eci5lIn2O414eL0OefGxcDlM
QM/ODfZhSfDILEUY8SY6JAZnD7kiycEdl4LOIzW3ENlXalBVW4ya8hwUZKYiIug0nOm59ntt
EUqbi2ICg2W5GQj0c8bG1a9hyR9+glVvvoI9WzbC/chRnPQPhKvvGTj60KenLzw8veHl7Q83
Alf2jl7YZ+uCkwHnUVPVjIctD1CYepE2WU4EptZj7yZb+PqEI6/qFi7Spuoi7Y5Tz/ki0mMn
fGxX4tC2d7CR1o3fvrMC31/yLn6z4QAcQpKRfe0h7g/MYlgtRUqXSKKPC6jWrXsPP/7Jf+LT
n/lbwYfqm9/8Jr71rW+B+VL95Cc/wVu0I2VhExigYgEZ/zSgWhSPRXxDSScGjmNgqoNATOXQ
PNxr7+BXNKE/fTQQNkcCYOMaChvPs/TdC186m4jlZTfgeLMHJ5p7cbr+GUIbHiPyRjvCrt9D
cPMtBN5ogX9zC/ya7sG3+QE86x/iYP0jfDulCDanYmHjFASb43Q/+zOw2eaGzzgG49Xz+Uju
nEHjiB7jGjH4n27hG1MsJABzwDbO90Mz0obxp3VoqaHdaJgHdh/cii0Hd8H5xAnEXEhDdlEJ
covKaJdcg4r6O7h2/yl6xsbQNdKDxlskKNPDEB/qiWB3RzgfpAWbdrl7jtBOmABVwNko5OZf
QtvNq3h8/ypKylIQEHUKO9294R4Zj4orDXjadhvNxalID3TAaYdVOLbjNTgf2Yod+3fg7c17
8cra/fjDxsPYdjwQCWU1eD4wgvvXWpAWEAWPzbQz3XEciYHxqCm4jKrCIiREhMKbAOGJ4y4I
DQ5BQmIy4pKSERkaigR/byQHnEReThEabrbi7r0HyM+7REDSG872++BwYAf279kKZ5ejcPXy
gLOPN9wCAxGVloaCumpkV5YhJikOXo728D92BH4Ews8EheF8ahYyK4k/N2/h2oM2VDZUoaiU
QEZqDM6d8YPjYVtsWb8ZWzftxsGDx3AyOBy+oZE4GZeMgOQ0xGQRwGtpwcOudgKZDTiTeg6H
A93hdDoAeTVXMDGnN4N1k2O5uU9npzH25A6e1BehMvk0Ql13wNdhMw7tehfr1q/Eio2bsWyX
A95zOoN9oZfgl1yL9MxqlKYX4Ur6JTSmF6Ah9Sqq4q6gKLIQeWcvoPBsBKKPH4fLrj3Yu2U7
tu3Zgd0Oh+BEws/v9DnEJBcgOaMMhYWVuFpFQK6qClW5uUiJiEOw3xmkJKbj9p1WHoRTBwUG
+p6gubYExalxSDl3Hh5u4QgIykRRSQMeP+nAw4ctyMoMh4cL8X/329i3cwV2b1mNHVu2EsDd
jXdX7sHWrW6IirmM1kczUBlEU5tB8KOS979E750buJ5/EcmBPvA/sg/HbXfilIcjLqUnoaq0
FBcSU+Hp6oU9uwlQHTiGM5FJyCivQ3J+EYKiQuDj54TjLvthb78Hm6jd26mfDjr6wdn7LALD
UpF4sQbFTS9w/ekM+ie0/G0/czgNFqh1dBA9BE5qUqKQF34aF86dQeiZAAQGByEtOwtXmq6g
trYIKQT4Dx1zgb2bF4IiI1BUScCyrgJJxBsfb3ccJRDv4X4cF7PTUVKaT8AzGPYE+HYftiMA
5gGvMzGISCxHUuZllFUU40pdLgrzo3GO5qAzAV5bAkX7bb1wyN4Lbm4EQoN9kBh9GrERAThF
Y/roYXu4uh2neiSgriwXZVlJCPd0w94N27FulyPsgpPglFaM4PwqpMSlI5X685LHKVwgEOQf
fA6+URE0n84i9nwAzgb7c9OhMwFw7+OeSKO5duPaFbQ0VeNC8lk4O27Hjq3LsHPru7A/uBs+
VJ+g06F8DDFzX2RMPAHMZO5+ERoWAafjfthN64e79xlkZxWjrqIOGXEE8Oj+u9Zvx1ECd1HR
6aimtTCvvBYX4qMQdeIYQpy2wP/gGhzdvQ47aTP0zoZt+MO63Vi+/zjcIjOQe+0B2volQCWR
RP+7NFRvv7OE+1B945tfg00uLf4JCQnw9/fHoUOHsGvXLq6hqqiowBiBhY98oPWr4SKoMojx
pqao1Lwcwdmb97EyPhX/eMQVNjv2w4YWcpv9R2Czz4FAVTD+1j8KnwtMwT+eSsHnPOPw9y70
t3M4Pu8WgX8JSsY/n4nHl85E4wuno/HZE1H4e69IfMEjFv/okwCbYydhQ4u9zbFT9HkaNnt9
YLPVBZ+2P4UfBsTBrrge0QTMWoZmMKERc2NZ52rjb5+xV5qnoJzqxmjPXdy+XoLE+GAcczmE
rQQqbAkwePj5wftEIDz9AmkRjEBUPIGEvErcfPAIrc8eoaGlFvkFqbiYcBbnT3rRTpIA1S5b
HPMKxPEzkTibmIGyqjo8b3+A7id3cbkyE0Hn/LHF3p4A1wnEJqag5NJFpIefQpjrXpxwWI/j
B9/DEbsdOGBvh520M95+xB/73IJwimlSWu7xt5ee3HmAzHNx8NvnDM89jvA84ATPw07wOnoM
rtSfPg5HEBEQgIK8fNy4fQt3H7ahuakRTcUluJKbj+s37uFhdz96B0fw9OljNDdeQVnRRaQm
RiI06ATtml3hQWCKmWQCIiKQWVyM66330PLwARqbruFyThbyE+IQcSYIxz19YEuC+pD3SbgS
uDoZFYnUS2korchFTWUeCi6mICEyHKGBwfDzDoSLC+3KfU/CLyQMISnpSCgoQ8nVJjzo7EY/
CeWn/c+RU1eM+MIspJWU4FZ7B4/Lo7F6FZz7gKiECOSYn8Fo50M8bq5EXV48kggUu9huwoFd
67Bt+0Zs3X8Qu455wdYvEu7RBQjPrMfly60EoO/gUV0jHlRewY38ZjTlEZ8q7+FZYytGCAzd
Jl5lhsfjtHcAjrm6kDAnkOnhCf9TIcjIrUF+2XXU19/EAzr36Z17aG24TqC2HJdSs1Fz+Sra
Hz/H1Nw0lATcpyZ68ex+E+ouZSCFwJrtXhLCLsE4H5OOisoqmnd5iCagfcxxG/YQmNq3+z3Y
7t8GR/vDOEbzx/6wB7x9wglg3MTgiBYyFtldY7A4ps/NQDPYi+G2FjSXXERiiA9OuR3GcYd9
8DruCD9fb7g4ueLAXhpTOw7A15dATlYhrrY8QHNbO5pvN+FqAwHE/FTExobBwdUN9h4n4eIb
Aj+agxGxGcgpqkft3V7c7Z5G/4yCR/U3B6fUaWCYmcTok1a0Xikj4BiLkBPeOLB/L3bs3A1b
ewe4eNCY8nKEm+cx+AeFIor6/urNG9wpfXRqGNcIcEVGhMHVxQmHaMFy93DBcbdj2Gu7G+u2
rsPKjRuw/4gzQuMIiNbcRcXVe2imDddt2qxUlmUi6txJHDt2FHsPHMbOvUdgd8SDm10vl5XS
ZqYFtxprkBQdBkcHW9jZ2cLL2w1+XkfhdGALdi5biqX/8w944+1t2HwsGM7ppThX0cBDPtSm
X0T9+USk+5/BkWPu2HHEAYccdsLu0EbYHdxBAM2WgLA7wkPOoaq8Ap20LkxP9uL+vVpkX4zA
2TB3+PkQSHKl9YTGkZenH3f4T0rL4utty81m3LzRBObXGkpg+5irL/YfcoKLqyd8aLz5uh6H
K4FA2z37CHCeRH5xNR51D+HqjVvIy0xBXKAHzrnQ2mG3Bcdo3dqzYye20hq7+ZA77H3OIjKr
HLX3OtExpsSEXjL5SSTRxwVUQUGncSrAD0HBAYiNi4IN85li6WbefPNN7kP17rvv8uTI9fX1
Hxkp3ZLJXmvO4G6OuSO+1XdvWoaS/gH4XmvAG+ej8C+0M/uiizP+ydcHXz8VhG8HxvJgnl/0
jcenvGLx116JsPFOxl/5puIT/qmw8SXQ5H0eNj4R9BkOm+NhsHE6i7/2SMI/B2bhK15n8b3A
aPwsOBk/8I7CN+1P41v2AfixdwTeCE3AmZttyH7WhVbZrDmcAtNU8YjTWlOKGCFCOnvNfnL8
Bbo7W6n9ZcjKTkJScixS05KQnpGF5AtZSEzJRvrFUpRV3kRjczuedvXh5dgwOvs6cf9BC1qb
63C9pAC5sfFIiIhBZl4FLpbXo+L6fdx78gIjwxOYGO7H/Tt1yMlN4v4kSRdzSLBXo6XhKuoK
LqIkNQrFF8KRkxrOzSLJGSR8c0qRkkcLc9k1Ej5t6O7vh1Ipx2TfEK6XVqEw/gIK4lKREkY7
VeJrPO1yL8YmoTA5A9fLq/H08ROMTIxjjATuyNgoRp/14OXD5xianMOwQotppRozchlmpscw
NtyDZ+130HStBrl5F5Gdl4vsggIUVFzGdQIMXYMDGJmawujIACY6nuDFndu4WlHJ+RMUk4LA
xAuIysnDhbISVNRfRuvDm+h+fh/t967jdmM9bl5rRl11I/LzK4mv2bhUUoaKppu4RvV52juM
cRLS7HX9idkptPY8xc1nD3HneRd6hqcwNwcCJoKGSm3KjcZeUWfBWbUqyEZeoq+jFe1361F/
ORdx588gPDwQZ8PDEJ2QjEQCDxcKriCv5h5qb3Th8YMxDD4ZxXQH9c2Dp+i88RwdLb0Y65wC
pjUwypWY6+5Fe+N91JVewSUCoenZGVybV1lRg6Y7nbj7aBA9PSOYHB6HYngMM7396G/vxOM7
j9D3YghjU9M8Cr3GqIBBR99pjL2424zrxdSnsdnISC+n/r+G27fv4tbtRgJWObiQFoGY2CDa
7DCH93gSyJnIpWfnXioi4XsFT570YF4NHlVfxsaxUXyFXyeEbTDOj0PW/RD3rhSjMv8CMpOj
kJwQhbi4GJyPjkX0+QTEx13g/fCgtQM9gwSOxqcwPjmCqak+vOhuw42b9UgjIJ6SV0afFQSk
qnG55hpa7j7Gk74ZHhJkRDmPeZ4lQIwzxp6vlEE13ofh7kcEYG6gpCAXUVHRCKf5EBHN3hiM
RGxCBDfvVTU24fr9h9S3Q1AalAQO59BJfV5Xe5namo2U5EQeOC/s7BmcIoDvf8YfHqdO4lxc
Miqv38XDnjECFcPoeTGAvp5utLfeQnVFPtLSExCTGI2YpCTEpxDwKqhC+/1nmB2dwvTwAO7d
rEXOxXjifQrxNp1voAJ9j8B111ZsXfYe3lt9ANscQ+GWUYnY+jtooL7pvncfEy138YDAVWpS
FsITEqk9gQgL98Y5AnGxcZHITM9CeXkl8bSNByNloT8mpjvw9Pl13LxTjpraPNp4ZSEnO4va
V4i6+ib6/T66uzowPTEM2cQoero7ca3xBi4VlnIH9bikVESEn0VSbBSyLiQjJSEeefnF3PVg
eFaFjhf9uEubm4aiLNSkx6A0KQJZsTGIpz5OTivAhUs1KKi+RRuhbnQOyjChEOLaqSVAJZFE
HwtQeXkxP0c77Nm7A9t3bIbNJz7xCXz605/GV77yFR4+gYEqph5vbGzksXX+FOl47CkhVAKL
Rs7DD+g1YvA6ITTBvOhI/tSgRtXwS6Q/bkP60wco6OtCJQmgi+0DiLk7AOerT7Hs4jV8IySb
QFM0bOxCYHPgND7hTYDqeIQApDwIUHlE4rN+yfhhfC02ljzASRKAqQ/7UdY9h4rncyhunUDJ
oynUDylxV2lAm0aNLqMGUzxgtSkRsU4IxaBU8RgxRhY/B1qeCJiZZlhqDhY3amioByODLD7Q
S/o+hMGhcfTTgjQ0osT4hAHTMmqf0iCmdaG/56egkU1ANTqEyefC69O9A5PomVDiJZ07Khei
YTPnYcUMAbGeVkxMjaJvaBgzUzIY5MTLMRJo/d2YGuzCUD/dY7APfWOTVOR4OarA8DiBDZkC
epbgVTvHYw/NDAxhqrMbsy9eYqSjA0MdXZgioCXrGyWhOsRjGbGccCxi9KxejTkWL2dKCeW4
nL8FOWtOeKwT86gpoFZM0gI/iAkSsGMExAZHx9A/Mi7EoVIoeXBPsPhSLHDrLIGEiWm8HBjF
w5cjeDA4gS7ZPIa1agzOjGBOMQ69ehJ6EvLKyXHMk+BmMY0mqE2Dg8MccIzJ1RhXGfhLDCwN
DUvezJLHTlN/jMrlPGr5zDyoXvS7Wsj9phLzvfFI1aYUO+p5zM6OESgYQv9AF0bHBoiHvcTj
QV73KZmKigYyufCM2TH6nKQ+maZ2TM1AM6omvoDnExTywhl4nj/FiJwEMbWJxgALFzEzMgSF
jIE+I6bkQp5B4U1SNq6Ih3MaaGVqHvlcL6bA0fMAmyx6FPXd3ATUw8M8DtfEGAHBGRUBZDXk
ChJ4k4MYGOpEX38nhmjODA33YWRkhGuMWZmYGMO8nCUREgI3zsMqLRHL88hieGln6BmD0E2/
oL6h8TTcTbzuRk9vNzp6XqC3dwQjQzJMjcxSNwpBOhlAU6oV3KdQp5ni9XhB/d4zOk2AZ4b6
n36bmIJsdp7HTZrnCbeJNzz4qlaM0q0Unz9NPJnggVHHJ8e4f1h//yTxboLm0QjGp2jMK6cx
SW2eUGoxo6axz3Jmqmd5vK+J8WEqNH5naKwQyO+jOcHeAOwd7kXHQD/VZ4L70LExMzpP43pW
B8KRUM/ROKFrh0c7MTjRhYm5cYxQv0+O0fyWmfw9DTwIr0bVz0GMXDZFPH6Ku7cqUZGZjAi/
M/DzOI8zUWUIK7uNi/c7cL+3F3NTY8RTmnM0Bga7R2hMjWJqth9D44+pv55jZHwAk5PTmJ6Z
FdwleFwy4i9GoNC8pLb1QTbfj9GJlxgdHcbkFIvpRiCSQLterbAEGyVQOiObQz9L1zOvonE7
hRc9HbRePMX4SD8GaDy/pLEzrdbyPIgyBbWfeDxPa5Wi7znkvZ2YJlA//GKMxivNnwk9H6fT
NE7laiHgMA/EDOktP4kk+jiAavXqVfjhj76PT336bwQfqs9//vPcIZ35Uf3oRz/igMrR0ZG/
lfRRJr+FgEohplfRCNGIdUL0Zp0YmXyOmwBB4MpAizADWXoM0mLKYqIMaIyonzAimIDVu5lX
8R9nsvAVn2R8iYDTF3wS8anjkfikSyg+T4Dq636x+HV4HuwqHyOlYx5NJAC75yyJXRXMmX2e
Fg8xFtU0L3pa/FleMjFqNF+0xLg9elP+PYMlX5cpuzt7W5EWeJaA2JSvC2LRMi2JXNCQmK5T
6kTBzu6pFaInm9I/MMAybxDAgvBPzpMbs2ewRMKWyMsGcx42nnDXnELFKkGtEGOZzlVaojTz
0BJaS544FnBxViU44utMKVkMUIh5/UzmWZXoj2RW/5uCUxpVPEG0KbeYKbqyVsyTJph7RY2E
Toh8rRfbOW0w8j5WGK3zwimFHITEe6ZR0qosLYHRlBPOElcJekuuM/a7Skz5YYpOzcYVAxRm
rQgM5oS6QphqAz8OnvOOv4NqzmmmUdMxAsIGrVU4Da2Jh5b8fDoNLFGtrRJos3QoPGWJwVI/
HkGbmd5UTEPDjgsvbLB7mJI1s+S+Gs2MkJ6FAw/t+yK8G8VEvjAXUw5CyzFTAFEW7d2UugQ8
4j/9rpi35KQkEMsTFPOUSEoxt5+BR7E38YKlTzEaLGZwFl3ekkJHa76/uW+Mln5h0c3V/Bwl
72MeIJeldDHngyRwSgDXlPeRBcNUqQ3iWBIi1musxraQb1FnSYzM+k6rNvcpC1xpSpYtJ75N
KXXC3GJJ0dVWkcuhEyPsz0OpF7IEWOf5M2po46CdIH6NC8E++fPmaZPUhdamq8hLyUJafCGK
KlpR0NKJq11DeD46Avn8jBDnjDYkOrmYGNzIkodPcHOukEhb0IAL403HU1LRjoPKjFjk3JeO
VsaF+S3ZuskyNohJsVhkdyWtIWpzjj6dOB+F3IO6980ZU/JkpRBMVBzHbB6Z8g/y9DlasX5i
mAsJUEkk0V8OqPbt24Pf/+E3+OrXvowvfulzsImOjsbZs2fh5eXF41CtW7cOR48eRWVl5Uem
nrE2+bGQCRBjUglpMMR0JGKiZC0HVpZiilZuSto7QaWddsolg3qcuT2APcW38U56Db4fmIwf
BqfilfPZWJ9RBs+q28h48BK3BjV4MWsx/WiNC9LCCvn6FiRrFnILWuoISz3FhKFWOZP5eeZz
xeNYlFjZlC6FpyMV/zS3X8wobxCDmupMefBgSqYqZLuHeG/rEBSWZ+qF+1qlXLVcrzcHKV3Q
FoN+4b30RjGsxcJqW4CJJau9dbst5X1DzMp/DkI7F7VVa76nhZem9prqCyyM0ry4jaZj1u2H
VbH0E6zuaaqvpT+tPy31N5r70pJaxMRDC8Aw89qARb9bnvm+fllQFrWDjT+jyAeD1vy8xbz4
0/xf2D8GLDTbCPc05fIzBbJdONYEfpjqbOGFRbgK9bS+v2GR8DWNeWFead83XyzP0y94Hqye
wfhhWDR/Pqrd5jEM48IEv+IBAVDpzbkL+TOMWHiczx+NUMwJiXU8S4FWOQ/F7BxkLMr9lNKc
C0/Leay3Gu9iW/hzNB9Sb73luLloP7B9xgW80y8Y+x/Y74vWBcv41Zrno9Fg1a+GRfNHAlMS
SfSxAVVw8BmEhJ7mYVm4D5WdnR0OHz4MW1tbbNu2DRs3boSzszN3kpTJZP+nqyugLREE0V4a
vQojmkcMyO2YQdzDIbjX3IXX1fs43diGhLtPcflpH9qHZrj5x6CXUidIJJFE/3sWTJaYmGmL
mbmOpVH66FymEkkk0X9nQOXtLYRkYX5ULq6OQhwq5kP19a9/Hf/1X/+FV199Ffb29jyw50fF
ofrYlTUIb2dZkowKOymmxmb+EUNqIx7/v+ydB1xVV7b/mcmbTKa9qW/y3puZZCZxMokpptgS
jbF3bCBVFBVUEAVRkCZFROzYsCIqxd6NHbFXFAXpiNJBpN9ezu/+997nnMsFsWQymfdP3D8/
K7edss+5N+6va629Vr2ArEYjchQGFKkNqNEZoZTDIxymuLi4voUoRFGjITZq7f1FysXFxYGq
PaBycXFGzy+7409/fh2/+e0vRaB69dVXWVI6rUXVo0cP5rE6ceIE+1fad/zXmTlnQMw9sujJ
JucAoCVPRWvOtTCYcy3aDw9wcXFxPV/tQZSlcXFxcaB6GlCNGTOKNUf+9W9+gR+/YgWrkJAQ
VsiThvycnZ3h4ODAVvlRoPquQ340v4F2lzeak8V1rNKySUvNIBrzYEk5DlI3ej3rF6iCxqiS
8qK4uLi4/vm/MJ9mXFxc/O+HpwFVeHgoq5Pn5z+L1bOzioyMZHWnpk6dymCK5lBRoDp58iSa
mpq+c6DSsZU+eml1mZRMaxSXDrNVK7SmjpGtJ4LBpGMJ8DqpEbNWSjrl4uLi+lcBFfu7qU0I
kIuLiwNVW6CKiorEvNBABAX7Iyw8GFZ/+ctf8MYbb+Dtt99mOVR9+/bFrFmzcOrUKSgUiu8Y
qNCqJIC4vFpebqxn3qgWgDIQE8xLuHWtVqZxcXFx/euASoYqLi4u/vfD04Bq7FgbdOv+GSub
8J+//rmYQ/XjH/8Yf/jDH9CxY0dzLz8a8qurq/uuhwvLNjDyknsVaAFKJeoNTax4o2gCW76s
pVXOBTHr6snl5lxcXFzf4B91kifqablUXFxcHKieBlT29mNZc2RzYU8bGxuMGDECQ4YMYTBF
W8/MmTOH1aF6/PjxdztYwaKwolS0yCAln2tMRqhNemJG9lwv1ZtpKc4n7ctdVFxcXFxcXFz/
ZqDy9fXBdK+pcHN3xfgJTrDatWsXYmNjWR7VhAkT4OjoyJojnzlz5juvw8KAioKRtqUStQC5
IKeR5UjpWeFQmidlalkFSLfXSPsaOVBxcXFxcXFx/XuBKjo6CuERIZgfGYqYlUth9ac//QnU
3nzzTdbLj9ahojlUFKhYP6rvGqgs2nrIVX1bqq/rpB5henG1n2WrEO6h4uLi4uLi4vo/Aqqp
U90xeEh/dHz/Hbz19htiDtVPf/pTvP7663j//fcxYMAAVimdFvasra39rodrbgnR0rYEzCsl
SC0bWHsIowxUYn80c781Ximdi4uLi4uL6/8AqGhSOq1D9Ytf/lTMoaIeqc8//xyfffYZM3mV
37/DQyWv8tOb86bA8qXEnCmxP2BLGQWjaEbRs9W6vxsXFxcXFxcX178PqCZMcIGN7UgMGz6I
mRXt2ZeQkIDo6GjMmDGDNUimjZLpKr/v3kPVuqEuBSq1ZFopd4o1/JS9U3qpooKRr/Dj4uLi
4uLi+r8DqvXrYxG7bhU2x63H7j3JsPr444/xySefoHPnzqztzLBhw9gqPxry+67LJrCSU/Kq
vVYr/FrazJgT0eXkdcv8KaPYZZ2Li4uLi4uL698JVDSHynrEEHTu8jE+/Og9MYfqJz/5CX73
u9+x4p5yUvrp06f/Dav8WudEQVrhJxsrkyBYlEloC1UGDlRcXFxcXFxc/36gsrUdg/c/+Ade
+Q8rMYfqvffew0cffYQuXbowDxWtR+Xr68sqpSuVyu9+wIJsUssHtM2PkqBK8ka1feTi4uLi
4uLi+ncDlZeXJ8udot6pd9/rAKubN2+y8N7atWvh4+PDalHROlQpKSnQ6XT8jnJxcXFxcXFx
oGoDVFu3bkFCYjwOHtqL1HOnYdW1a1fmnaI5VPSxT58+mDlzJlvlZzAY+B3l4uLi4uLi4kDV
BqgcHe0xctQwDBjYB7379BRzqF577TVW2JOWTRg8eDAL+dHVf9916xkuLi4uLi4uru8jUE2c
OAHdP++MX/7qNTGHqkOHDnjnnXdYY2S64q93794s9Hf27FnebZ2Li4uLi4uLA1U7QOXi4oyv
evfA39/5G97u8Casdu7ciQ0bNiAsLAzu7u5wdnZmOVSpqak85MfFxcXFxcXFgaodoFqxYhlW
xCxhtai2J2yB1dChQyEbDfeNHDmS1aH6d63y4+Li4uLi4uL6vgGVn99sTPNwg/M4e1YxneVQ
vfLKK/jjH/8IWkKBJqV7e3vj5MmTHKi4uLi4uLi4OFC1A1SjR4/EBx++i9d+9h9iDhVtjEyL
er711lusYvrAgQP/rXWouLi4uLi4uLi+b0Dl5jaJre7781/+G7/7/X/CasmSJYiIiGCJ6C4u
LrCzszOv8quvr+d3lIuLi4uLi4sDVRugioyMwLzQQGbzI0NhRWtOTZ06lSWjjxgxAtbW1gyu
aLHP5uZmfke5uLi4uLi4OFC1Aaq5c/3g7TMdntOnwMPTHVavvvoqfvvb3+Jvf/sbC/kNGDCA
h/y4uLi4uLi4OFA9A6icnBzQtdunLNzH8qg4UHFxcXFxcXFxfTOgGj9+HL7o0RV/fP13YnFP
HvLj4uLi4uLi4vpmQBUaGgL/ub6Y5TsDPrO8eFI6FxcXFxcXF9c3BaoFC+YjLDwYoWFBWBAV
/i8omyDQk5kshyCa+X2jhcFi29bvm4QWkw9rae1t8y+5YdIY2HnIK9nk62g5l/w+zOM3tbou
Li4uLi4urpcFqJ4I+dHCnhSqXn/9dfzjH/9Ar169QMOAtLCnWq1+Lo6YjJIJEpzIBGQUHwWT
npiGmI6YsQVa2GsN+5zBiUDMKAOTCQYycL1k9Dl9j33GtpEh6NvBjIlBkYaYjpwD0JLzaKVz
CpDOaRQf6WuDSR472c+kkfbVtwONeBIwn2pcXFxcXFxc3zegcnS0Nyel//S1V2BlY2OD0aNH
s/wp2n6GPg8ICMC5c+ee38tPsAAqBif6doCKgpOqHaDSEEBREdOzzc2wJEEVfU8v2dM+N3xL
HqHjNUHF4IhClEYyveRhM1+bdC0GCe5agErFYAwmPQcqLi4uLi6ulwiofH19MHXaZLiMd4SD
oy2saPJ5UlISFi5ciClTpsDe3h6zZs1iOVSNjY3PRRIzcFCYYGDRGqhgosChEh8lD5bsoTIw
kAGDGTm8JnugGJyZRGOIY+HBYihk4Un65yWCEdhYLDxiZu9UC8DB0ktFL4uAlLivHv9c2I8D
FRcXFxcX1/cVqGJj12Dd+tWI37oJe/fthNWbb77J8qdouK9Tp07o27cva4586dIl84GeC1SM
MPQSNKF18hN7XwYPtHqfeqfkMJs5xEbBSdCLwCKF45gJElRJYGO537cBKhnaDMzjJR1PhimD
UTSjsVXYj3nGpP3++RwqDlRcXFxcXFzfV6CaMMEFffv1wrvvdcA7/3hLzKGiRpsjf/jhh+ak
9GPHjr3gKj85Y1zTCpxEODKJ3iWTRvIywQxgJikHyhxmk71UkIBKkEJq9JGZXkoCN7UKzxlM
3w5KWBjSZGzhPDZGClHkfAadaEa92TMmQhXM9vQQnvEpxsXFxcXFxfV9B6qxY21Yc+Qfv2Il
NkceNGgQg6j+/fsz79SwYcMwe/ZspKSkQK/Xv8ApZS+PqlVoz5xEDtnbZAFUxpbVc1oLoBLh
yChtq2ltUvK3HJrT/As8VILklZJzscTzUoAi5zPIJgOVCEOyl6pVyFEwtbPakQMVFxcXFxfX
DxWo3N0nw8nZDiNHDcPQYQNhdfToUWzfvh2RkZGYPHkyaJI6XeV3+PBh1NXVvSBMacxAZYYn
qayA6G2yyIEi9MJMyk2yhBMRqoxs5V8LiInHE1hYzthm228JVBa5WOJYCUAZFWR8zcToo0qE
K6POwkMmjtm8GvCJ+g6mNvemjXGw4uLi4uLi+t4D1cqVK7By1TJs2LgWScnbYNWhQwd88MEH
6NatG/r06cNW+QUFBbFVfjqd7gWASmcR7tNI4T3ZI2VhRikfyWDBF2aoguR1oh4r+two1Z6S
vEIMpGD+XCvVjPq2knOxxLIMOgmk6snY6qXnqhaYsgCqVjlclgn4lrW35JyyVvZt8664uLi4
uLi4/n8AqhkzpmPY8EHo+P476PD3v8Lqxz/+MatD9fvf/x4UrmgdKm9vb5w4cQJNTU3PBSqx
llQboDJZJJMbtARGDKIZCU0pFTA2NsKkop4fAQY1eS1ooSFAoyTgpLLIjTIS0xnF5/S9JkJj
dBsdoTCTia7FI8aek20JsFEApEafyxev1WpZ6JK+Z3lT2E2SzmOgIUgNGZOujoy3RjR9A3lU
QqtsgqK5EYqGWqia6qHVqGAwCNCQfZSEBNUqcg61aDot2GdGo55Al84Mm3qDAhptI3lUieOW
xkzLUliOp9XYJNGx0+0EQWj1OX0tXyd9Ll+j5ef02ulj2x+HpalUKvM9o+eR71fbcbzID669
c7Qdd9vP6Lna20b+7Gn7Puu+0X1l02g05tC15Xbytcq/HbodNfl3Qvel98Vy+7bfFxcXFxfX
ywtUEydOYDlULH+KGl3d995777EVfl988QXr5Sd7qOgE83yg0klAJZc40LUUvaQhNI2ScIVW
SvDWSF4fNXmkSd8GMT+J7KcjoKEioNFEBtxI4UlH4EpLJlWBHJG8VhJrpgBAIYtsKxjJBNhc
L4bq/olJV/Y0USzT68kxtASg9ASkdOUwNd1HQ0kW7udm4OLF8zhzNgVHjxzCvl3J2JOcgH17
9uLo8TM4nXoDt9IKkZtVgaqKZmjUYlq9SQY+k5aMTkHuj5I9F00vfWYyT+bPAo4Xvab2tm0P
AL7JMb8JULU3nmcB44uaDJT0PlGzBEQqGaLpdjJUyts87Xq+yfnpsen/B7TIbVvQfLEcQy4u
Li6uHyJQubqOZ/lTvb76Al26fgKr5ORkrF27lkHUxIkT4ejoyMom0ByqqqqqFwSqlomlZVWf
SlqlR17rCUjoVGJekrFJ9P40Poa6ugKGpgaolI2o1ylQbVSgQq9CtVaFBqUGjU0qNCu0qG1S
olzZhHJdM2oIpCnJOfXkeNS7pddp2oUS2WPV1iNBJ0f6vuj1IROmnkz+FPi0tQT+SmFqyEVj
7gVcOrEX27ZuwpzAEPiHhiMkJAj+vt7wnuoGr2lTMccvEGERy8k2h3H00CXcTb+Px4+UBPRk
7xeZ6PXNElA1M6gyCmTMBCYNBAblSV+GAdkzIkMPHV/bCdzS82IJFPKEL4do2/Nkycd7mreu
PfCwHNM/C1bysej5ZfiRC8bK35Pl2GSzhCgZkp4FSk87r/x9W16L/Nugn9HfxNN+P5bA1N7n
z/8HBxcXFxfXDxWoFi1aiJiVS7ElfiN270mGFV3dR8N83bt3Z3lUdMUfXeV39uzZF/gXuFFq
LdPScqalnQuBJ0EheqCo6ZUiSKkr0VyaibvnjuFIYjySNsdhy9Z4bD20B8kpXyPpzFHsTzmB
k6dP4fiRozi0Zx/27t+HfWeOI+VeGjKqi1GhboTeaBC9QXgSAiy9FG0B5ImJl9XSIuNrJjBV
dgtNd47i5qGNWL0oBFM9psB+0hTMCYvEhrjN2LMzATvJjdsSuxqbN8Zh27Y9OLT/PM6fzUR+
ThWaGowW46EwpCamNJtBaCaQpWThQDns9zyTQ01tTb7Gb+sBsrxH/0oPleX429tOhqxvO/4X
Of+z7lN74cAX9QhyDxUXFxfXywtUnp7TMMZmBPNQUWN1qGgeFc2houE/WjrBx8cHdPVfTU3N
c08ot5ORE7PFGlO6NkClFXOU1FXQ1dxD1uX92LQ4EJ4u9hjYfxD6DB0JG4+pcA8PxNTQOZhF
LDRwNvymTYKnsx2mTXZh7y1P2oTdl8/iUn4uymqbWLiO1Yay8MJYwgZV29wiy3ANy6Gh46V5
XuWZqLi4A5e3zkfcfA94TLZH7yGDMWLCFITGrMOlGzfwuLoMTZXFqCzMxcP8QhQXVSLnXjWK
8htRXaGFoolAgr41UBFSk0xhLithmUdl6ZVqzwPztMneMoeqrVflaXlJbcNx8r2hj5ahs3/G
MyXnHMm5SJZhOBlqnuWBexGAsfx+5XPLnrlnhU7le0O/77ZevLbjbAuq9PjyfpYePp5HxcXF
xfVyA5WLizM+/Oi9lhyqjh07shwqutKvc+fOGDx4MOvld+HChSfyVdoFKqnYJQMqY1ugahZD
fQoCU81VMDU9QGPJZZw7tAYhnnbo360TunT/Ct0Gj8GE4BAsTN6KVbvjsHVPHA4krEP8onmI
8JgAz/FjMHrcCIya5gwnAlqB69fj2NW7qGkWUN+sMjdxbut5oAnX1dXVePz4MWujI+fBmMFF
asRs0jSjOSMVFzeHYp33CPg598Zo677o3Ls3+tm7wn/JGqRevY66R5VQ15ahueIhGiqr0Fyr
Rl010FhrgqqZnFMrQSWDJa3kmSL3wdQkParZ+zq9iozpER4+fIjS0lJUVlayEhVKpdKcFE4n
cDlpuj2vi0KhYPvQ/cvLy1l49tGjR6itrWWfWUKBHOKi1982SVuGFHouugiB3it6XHrvXgSs
ZAh5mudLhhZ6/ymgU6PPLcOxlh6r9jxacniNXhcdIzX6nI7xWd6lp0ElPQc9Hr3f9J7QR3o8
OYRnmdTfXkjQ8rhcXFxcXC8nUNEcKlp/qnOXj9lKPyuaKxUXF4d58+aRD11hZ2fHQn7UQ0Un
1+eczpzYTXOHaP0DsaAnTU5vbgEqZRMDKqE+H9X5p3Fi50L4TRyCLz7+B74cMAoDXWYgMmk3
Uh7m405VPsqrc9FwPw0FZ3bjyKpwLJw9CaNs++GD/l3x135foo/bNKzZcxol9YBK3zrXh06K
FCoorOTl5SEtLQ23bt3CnTt3kJ2djeLiYgYMbEKnwckmBfSPSlGSugs7gp0xe2hHjOvzDoYM
/BLdBw1F/3HT4B21EvuOn0RmOhnT7SvIvnoOWdevI/duHh4WNKKqjEz4ShkmLYGKHFuoRaOi
FNU194kV4XFtOSoqS5CVlYkrV67g5s2bbHx3795l46WARL8w2XvTFgro5F9WVobMzExcu3aN
tQi6TsaSnp5OjpmFgoICBmh0u6d5aiiI0HNQuKH3o6KigllRURG7R4WFhaxK/jdd5UfhpC3w
0OPQY9Nro2OkRp/T9+hn7eV9ycejn1FYpGPMz8/HvXv32PdIj0HvV0ZGBgNJ+jul57MERRno
5Ef6Gb0ndNuSkhI2BnoP6fHpa/pIQU/2FNKx0d8QPSc9P70myxWA7SXIc3FxcXG9PEAVE7Mc
q9eswOa49UjesR1Wo0aNwvDhw5lniuZP0ddz587FyZMn2Y7P9E7JlcZloHrCQ6USV/LRFX2a
KqAhExU5B/F1Qihmj7dGj0864Z1Pe+Mz63EI2bwNKfnZuPUgE/kEpu6nnUJq4kpsXeiL4JnO
GO0wGJ2Hfol/DOyDPq7uWLXjBErrjXhUVYPq4iLcz83CzRvXcOLkaSTv3oMNcVuwKnYtNm7e
hNj1a7F69UqsWbOKwGM89u0/jNRzl8n2d1BVXIW6wnxkH4rHOk9rTPr8TxjZ7U0MGNQXPUfZ
47NR4+E4JwwxGzfhwJ7tOLp9DXavW4QdscuRtGkztsYfwL7D13AjnYBSlRoqpQ5aRR2aH+Xh
cfEtXDqzCwd3b8aGjauwbss6JO7bjQMnvsaBI0exa89uxG/bgk0bY7Fp5QrErV2NHUnJSLlw
BfeKq1HRbEBdkxFKhQ46AqWq+mqUPszBjRsXcPjwQWxPTMDW7duQmLQVu3dQ24KdO7di7/5d
OHzmNE5evYrK5mbUa5TQ6hTQKh/jUXEubl1Kwd4dCYgl51u3aQviE3cicdc+9rh5awJ27TuI
Kzduobi8qsUD2a6MLHzZ3FSL7IzrOHVkH5K3xWHrlngkJJPn+45j54Hj4rHj47B5wxrErV9F
7tlG7KArJg8cxsUr6cjIIqBZ0wiDTg9Bp0b940rkZt3B1SsXcIpcx5HjJ9i2CTt2s+vdunUL
ErdtRtL2Tdi9ezuOHD2Ai5euISv3ASofNUOllr1cejTXV+BBQQbOnzmB7dviyW8gFqvXbUT8
9h3YsfcAu1b6PRw6dAiXL11AdhYBtbu3cOrk19hGtl+0eCniE5Jx7vI1FJUSCGxWQKPTSmFM
A/8bh4uLi+slBaqAAH+4T5kIG9uRsB4xRMyheu211/C///u/eP/991kOFe3ld+bMGRbueB5Q
0SKcrHWLUa6ALlUcZw2NyXOaU8Sgqhzq8hSUZ27DicRQTLIeik/f6YwOH/dC1+H2cA8IRfT6
dVi/fQN2EgDZkbgaq5YFwnfWBLhNc4TtpLEYOdkJ43y9EbUhDtfIJEw9ZPWF2bhzYj+SYlci
Knwe3Dy8MMzOASNdXOA+yxs+gXMww9cLE1ydYGc/BhPGT4bbVB/4BS/Fuo37cPTgeRTcyEDG
vkQsn2wNl25/xZDOb6PT51/gjZ6D8N6oiRjpHYTolUsRuywY0d5jMd9tMIImDoOLzRAMHD0W
vcdOQcSa3bh8pwR0jtVU5KLh9mHc2bUYUe6j4DKkN7p174mu/a0xfLIH3IPCMDciEmGR8zE7
YBZ8p0+E+9B+cOzdE1Nc3RCyZD1ijqbhwL1G5FeLnr/6+3m4m7oHJw/HIiFhCdasXYbAeSHw
8p2JyKggrFjki8jA8ZjuMQq2E0bAMWA2ghIScDS/ALcqHqKiMguPCs/j1pH1iJ5hB+senfBl
9y4YONIONpN9MJFc4xQCjh7+YZgVvACbkvYj+0EFquqVaFCoCZBZJpALkulZWLP+cR5O7FqF
gMmj4DTkK4waOhz9Rkwi98UHdl4LMCtiBZYtjcaCYE/McLWGsx25VlcHTPDyxRSfxVi8Yi+u
X8uFtlkJVfVDXDm1G1vWLcTKFfMxJ9APjpOmYrjjRLjOmI3whQuxaFE4gue4YfrkEfCcZoPp
M1zhF7gAkUu3YfehWyitom5LAY1VeagvvorLX29CVMA0jBk2AD169kHvwTYY7eKB8V5+cPfx
h5ffHATPC8KqFdHYsTUWWzcuh/9sT1aw7fM+/eDgPh3LNyfhXHo2SuuaoDAaYBAI/Bm14EVa
ubi4uF5OoHJwsMMnn36IX/zyp/jRj61gRWHqd7/7Hd566y188sknrKcfLexJmyM/30NFK5jr
GVSZe/QZ9S3NjOlrBlRk8hXKoH90BjX5iTi3dyG8xjqj58cD8UH3gegyZBTGeXkhICIEvn6e
mOrhDPepjnB1s0O/oX0x2IZMwh4eCFi0CLHJyThy/jyyih9Ap27C7SM7kUyAwn+yCyY7O2Kk
rT16DLXGAHt7TJw1E1MJTE2Z4Q4nZzKJjrGGg/04ODhNwWTPeQiL2oy9u84i63I60glQrfaw
x5Q+H2Hkl5+gS9+heGeQE94dPRWOwdHYuisRJ/dvxO6YmdgYMBbh7oPgYN0DXQcOwKcjnDB3
1S5cuFvG8rK0JRmoPrsJ51eQMQ/riuEff4C//70TPuw9ErY+IQiKjce6pJ1I3LkD8dvXYWmE
H3yt+2N8jy5wGm0L+xnBcF6xH0EH7uF6seT5e1yJ2qwUZFxLwrHDa7F163osWBiFiOhIrFwd
hZgoT/hOG4ARwz7Ahz06EBAchkFB87D+WhpO5magsOgaKjIP48auKERO6ochn76FLz7thC5f
DcHoqX7wiVyNeTFbsHBdIlZt3YNDZ6/ifmUDHjXr0KjSQWNgv6gWoKJ+K1Z/TIHamns4unUB
ptv0wPCu76P/l/3x1ShPDJgcDdeweITH7kBiwhYkro/A6gh3BMy0wVhna/I9jUSPIW5wmRyF
+C0HkZVGvofUw1i/cA68J9tgyiQC2p4zMGV2CHzmr0DUum2IS07Cjh2bsH1TODYs90aInyMm
ThiDEbausJs4D6HLD+ByepWYj1ZXiJqcYzi7YwHmThqJLz/uiHf+/iG69xkF55nzELBiM1Zv
34UNCYlITN6GQ/uTcP7kXqQe24EtG1cgMGgOXD294LdwOTYfPI0L2Q/woK4ZDTo9wSgdA0oO
VFxcXFwvL1D16NkNb/71T/ivP/4WVklJSVi/fj0iIiIwbdo0ODs7szpUR44ceW4O1dOBStcC
VAYJqFAOQ8051BbswsVDy+Dj7Ip+3YahY9e++KjfYNi6T4DnHA+MHtufEN9f8cEHf0Wnj99H
735DMXLsZMwNX4U9J68gq6wSFep6PDY+glpXjoMbFiHAaRQGfPoBenb+FF2++BIdu/dAz+HD
MX7mdHjNnYWZfjPg5u6CcS4OzEPlNG4axrvPhX9wDC5fvIvaolJUXUvBwcX+iCIT74xxthg7
cQaGTA2DbeBaLNl9FrnFRdDUFqDy9gGk7Y/GjmXTMXvaGHQZ0B+dhtlj9rIEpKY/YJ4RVfEd
FJ+MxfGFkxAyuhdGdPmYXE9X9LWdhOB123EkLRNZD8tQXFGCsrJcnN6/BcunOsFnxAC4OjnB
2t0bQ8I2wjPhEg6nN0Kpo2Cqhqm5CPraO6gsvo7ivByk3UjHjj17sW9/MrbFhiFgxkgMG9QR
HT75C94Y0BdfzvRF1JET2HvzCnLyLqH0zmFcSIhEkPNX6PfhX9H9448w3M4V82OTcOTSPVy4
V4LbRTUoqFagWgVWnb5BayLnF1hnxdZAZSSXqiGsp8Sj6hzs2RSJ8UO6os9H/8CAvsNgOzUK
0xfvx7pjWUi9V47Kygeoe3CNjOEgLh9bhygCTdYOtnirU2/06OeEoKCFOLRzFxJjl2GK3RD0
7fIhBnz1Fbxnh2LN1oNISXuAeyW1KKmpQm1dEeqrr6O68BQOJi6Gr5crvug9HJ/0cYKtx0LE
7jiNG3duI/duKuryTuHy7mUIc7NBPwK2nd77DMNsJyNy4w4cuZmFG4UPkVV0H0UPC1BdcR/a
xjIYleQc1UXIISCalp1LfnM1KFEIeCxIxWVp/TKDFkaDhgMVFxcX10sKVCtWLMPiJVFYuiwa
setWwcrLy4s1RR47dizLoxoyZAjzUNEcqueH/J4DVIIcBqQeqkqoKs+hIjsJp/csgoetI774
pD+Z/Pug2whbzJgXhEVrouAX5AZ7xz7o1+dTfNqpI3p80Rd9+42F65QQxG47guu591GqeIxH
xkoodA9xcNNi+NgOwefv/BXdOn2IL77qi+4DB8HWzQ1hMcuwPiEOmxM2kYtdyZoYrloZi+jF
sYhaFo+NZKIuzCegV1eHhszLOLZyHha622GGsz3sJvli1PRFmLJ4NzafuI3qOtqa5hEU91OQ
c3oN9q31gd9MW3w1Yhg+G+EIn4WbcfJKDnQaLVSl91BxYTtSV/kgxK4frLt+jPff/wwDHdyw
LOkAbhRX4rFaD7WWUIu+HtdPJGP5NAfMGjkA453tMIBAXy+/JZgcdwr70+vwWGGCuroK5XdS
kZaSjNMH4pFy6Gsc2XMMsRu2IH7rRqyl4dEpwzGgX0cCKW/gjb4EqDx9ELbnMHZfvYy8/Bso
yzyJC4nRCHDsjz4fdiD3/1PYT5yOuAMpyCxvxsMGIx7pxKr0GslU5DvVCmIbIFiudCPfMy1S
qkUjKqvvYe/WxZg0+isM7tEF9vYTMXtRMlYdzsWeG9XIrjHAoFdB/ygbFekHceHASoQFTUWf
gb3xbufe6DnADnPnhmF/ciLili+E05A++Pz9jujzRR84j5+BlZsP4mp2NYrrdWjU0ZWSDeQ3
VQBl1WWkHoiFzxQXfPDZl/h7N2sMnhSMhVv248zVi7ibdhLF1w/g7JYFCJswBgM/+gCfdPwU
YwhQr9x7HNfKa1GqJFeg07L2R2Ix2iZmgo5Ae20VapQqNNB3WlXqN7GQHwcqLi4urpcXqGjB
b9/ZMzHT2xOzfGeIOVS/+MUv8MYbb7CQH01MpzlUx48fZ6ueXhioBAmoaANkQW6OLEMWASp9
FRqLU1GUnojDCZGYOGIMPnmvFzp8PBij3P2xafc+XEy/iGu3juHc+e3YtCEMU91s0LN7F3T+
rAd69RmFyV7BWLt9N1JupSGn+j7qlOU4sm0tQic7YUTP7hg2sB9s7J3gPGUa5i1dhr2nT6Co
sgRl1SUoKb2Ph8WFKC2pRG5BGbIKalBZq0d9HV2JqEBTzhUcignBPNcxcB01CiPsPGA9JQpu
85Ow/uANFFc8gqCsQG3uSaQfX4nty6dhuttQ9KRLJoeOhe+CDThx6R7UZAJWlNxD1dWduLg5
BCEOgzG8W2d88EFnDHV2x5o9R5BR+ZhM4nQVm4Y1Y047lYwYTwf42AzAxPH2GDzRHX0CCcxt
O4kThSqUNphw9+oVbI+JQKCnPdzth8PH1RMzJ88i8DsXoaEhCJ87DdNchqB/n4/w1kdv4a8E
LL90n4HwHQex+9Jl5OTcREnGaZxLXI65ToPRt9N7+PyzLnCcNB3bDp1FVnkT7tfqUK0WoYFa
nVowN4+2BCrxyzcwoNKgFlWPM3Fox1J4uAzCyIFfwXnCNMxeuhMrD+Xg60wlCsj4NWolyu9d
wtnk5YgNm4apztbo9eXn6N57GEYQ0Fy+Yg0unTmFw0lxmEHuQb/uXdGvZz+4uHpj8aokHLt4
D3cKq1DdVA8B9dA0ZaA0+xiOb1+GGa4O6PRZL7z75ShYe4RiUdIhnL91HdmZF/Dg6gGci1uE
+a52GPzRh+jc8TPYjp+G2COncadegYJHtaijZSZYCE8tLqYwNKKxtgz3i/JwMzML2aXVqFDD
DJoUqMT6azoOVFxcXFwvKVCNHWvDSib84b9+g9d+9h+wevXVV/Hb3/4Wb7/9Nj777DPmpaJl
E06dOsWWor8IUBlkoDLIQKVnISE2CEEGqkdoKr2E4sz9OLknBtMcx6Fnt2Ho8OlwjJ+9CIfP
X0Px4wqoDVVk0OV4WJiKpPiF8PJwgr3daAwePhIj7cZjyuxgRK/bjN1nzuJW5l0cT47HhohA
+E91w7RJkzBhshvGT/OE/4IF2LQjCbdzMpBTmI28/HsoLMwnYFWOwgcVKCiuR4OCTJ8K2luQ
QFD+TRxfH4XIaS4EWOwxdpw3HGcux+zlB5B4KgOP6+mqxSboK9NQdDUJ+7cEYu4se3wxsC+6
Dx+LkOVbceFmPrRqDQHHDBRf2YXUuHCETrSBbd/e+PzzPnCc6oNtR08h/3ED8/wYWQX5BuRc
OoKtoTMQOskO06dPhuOsWRi7cC18d6fifJmOAdXllNNYHuKLibb9Mbp/T0wc7YxJY6fA0X4S
ZszwxtwZ5PrHjcCQAZ/jvc/eR4c+A9DbzQcLdx3BnotXcS/7JorvnsfFXesR5u6A4V90Rf9e
feHlF4p9p6+g8JESZU1GNAoiNGhlT4wFTKFVaQOBFSo1mqpRU38bB3dHw2PCQAzu/zmGjHKA
rRcBwug92HA8D8dvluJO+j2cP7gTcfP9ED7FEb4TnTDd3QO2TtMwK2ARDh46hqLcXGReOYd1
0eFwcxyLMSNGYvrMuQiOWoWYLXuQTCDo4vWryMq6jlsElE7tXYUdq8LhN2UihljbYYDDVEwO
X40tpy4jo4h81w/uoCbrHG7u3oClnhMxpvvn6NmlJ1w9fLH19AXkq3R4WFePZrVK/AcAyPUo
H6GmNBfXL59hrQSWx65Hwv6juHAnDw9rVWgyivdGYP+PcZji4uLielmBysnJAd0/78zyp372
85/AisLT9OnTMWHCBIwZMwajR49mOVSnT59+bq8yga3wezZQsYRqtvKvAfraTDSVX8adS/sR
FRgMF2cPfDV8Anwi1+LUtUxU1DVArWtkIR2Dqgi5GSeQcjweWzZFw2+uJ+xdHDF0rCPs3X0Q
tHQzEvcex8Wvj+LSoT04uisJG2PXwj8oGBOne2GKry/8w8NY0vaSmMWs3866dWuRkJiM7Ul7
sWPPMaSk3sTDB2VQ11WjNucGUhLWYE3wLPh7esLDOww+EZsRvfUMDl/KRV2TktXV0lSlo+zu
EVacdOXSuRhDxmTj5oXYhCPIyK9knpumilxU3z2Om4fWY+nsqQTQ7DBipC1mzA3HnlOpKKh+
zBK9m5uboawrQ/6N09gbE4lFPlMQNNcH3pEL4L0xGdFfX8OtagF1OhPu3b6NhNhlCJrpikkO
I+HuMBEuY1zh5OAO75mzETJ7JrzdnTF29GB06/0luo2yh+2cCAI0F3Di5l0UEKh8VJiOe2cP
Yn2EP6Y5OMDVeQIiFq3GsYtpuP+oGVVNejTqRaBSvwBQiYVLS1BXfxEHds6Dm3NP9P3qY/Ts
Pwg9bKajn1sURs6IwaSAlQgPX4bFQfMwz30yfB3sETp9FlYt3oD1Gw/h4PEbKCgoh6qhCXWl
93Ez9QgSNsVgSXQopnmR36bHdIzz8IbHnACEzJ+P6IURiJrni3nek7A00Bthc3wQGLoA4avj
EXf0Au5U1kNFfpMaBYG93Ku4dSgBawN9MWmENcZY28A7IAw7z1xEzuNGKOXcMIMWzXVVeJB9
CycP78TCiGCWczdgqDUmenojZmMCzlxJx/2KGjSpddK94HWouLi4uF5WoLIM+fnP9YVVeHg4
qzvl4eEBBzLJ2tjYsNYzNCmdFsh8YaAytg9UBjr30PIJtA2NsgRoLkB53nVsjV2H4MAF8PCL
wNItO3Ej5wFqFTo0KZph0DaJ1cUN1eSxBuUP07D/QDwCw/zgMGkixnnORuSaRBw9fROZ12+g
pjAH9eWluJN2E/EJiQiLXoy5EfMRFDkffsFzEbYgFFFkEl65cgW2bktAUvIe7D1wgtVAKn5Y
AUGlgLGmGAWXT+BUchwZGwGrTUmI25eCnSl3cDWnAgqNFiZ9I1SV91BTcAnZN47iyL54+IUG
Y07EYuw/fgX3y+rYJKt6/BDK0lsoTjuOo9s2IiZqAYKDwhEbl4AbWWSstH0JK9pJoEXdgJri
HFw7tAuJKxdj8/q12Lx7H7adv43judXILNcysKmpKMW1s0exK341li8MQVRIGGbPmIvg4Cis
WrkOW8iYVy8m5wmYDTcKhPMWYnHiIey/koEbeQ9RWVXKqrxXZd/A4fj1WBAQgDAyps0Je3Dj
3n3UKAU0G0SQUhCoqlcZxKKpzwQqWv29CPW1KdiXGIBJjl+gX+9PCFANRPcRk9HTOQDDPRZj
rMcC+PotIPdhOWLDo7AyOBw71ibg8hkCKA80qGkQ7wX7Q+6H4lERHhDAvXHtNNZtXovwpdHw
DQ2FX1gEwghszo8Iw0Jy3xeHBiB2ETlW/GacSr2Ii3fycKekDo3SmKvKCqCtLkTRzRQc2rqe
bB+C0NBwrNuSSLbNRUWzFo1KDTQqNYGvRjTVlKM0PxMXTh8hsByNKQT+RtrYwtPXD7HxyTh3
/Q6KymtY427WS5JXSufi4uJ6aYEqgsxFoWFBCAsPRnhECKx+/vOfs5AfzaHq1KkTC/n5+/uz
OlQvEvJ7AqiMIkBBbprMpkmalK5mITOTvgaahlJUl5ai8H4xMooKkVNJJnpaWVuQJm36h1YI
ZyExBZR1Fbiffxc3bl5E6rWLuECrZReVMm+BieYhKZugbaxH7eNHKC2rQG5RETLzyOSanY20
u7dwOzOdVSbPy8tBUdFDlJRWoqyyDpWV9VCrBGib1TDUVkFfVQxlWSGqSwpRWFyGzJJqFDfp
UE3ggq7qIrjBPG0mTQ2MDZVoqq1EWkYGMgtLUVqtRBOBEj0Zj6Cqga62EIrKbBTcuYGcu3eR
k12AB2VVeKxUMA+QDCnkDkKjbEBT+QNU5ZPx5RegoKQKBXUGlChFb5GRhgeVzVAS6KsuzUJh
/i3czbiFtFt3kZaWjbsEDgoyspB3Nx13b6Xh+q07uJxZiMt5Zciv06K8SQO1Win2U2x8BEX5
QxTnkP3SM/CoXslKI9DVfCopnGWw8EzRR7m4Z9sCnwyohAIYVQTSEkPhYP0J+vb8GP2HWGOE
6xxMj9qGZTsvY+eZe7iSlo976eR+3M5CWRa5x/dryH1WoJlcY7OGtgqiKxnpz0bFwqDQ1kKn
eUy+uzTcvJdOoC+TWBZuZ2Qi4w65n7fTkXs7DWUP8lBW+gBl1bWobFCjTk2+JYP8G6IrTZuh
byxHRUkesnPuIjMnF0Xk+69vNogFaQVTS71/rQqa+keoKi5ANvndpF27ijMpqbh87RayC4pR
VdvMjv1EPhkXFxcX10sHVG5uk1jZhN//4df4+S9ehdWvfvUrVofqz3/+Myvs2a9fP3MOFQ1J
PR+ojM8EKrVWA4NeK636U4ueKkEFg0YNhVKNGlUT6nQqFqLRWXpB6LHUupakdtr8mBxHoaN5
LFo0ku2VtMkwnQjZykKBlSygngONgZxXb4BKp4WSnF+jU7MEcMumuszjArlVjlR81EjGZ2hm
ptbr0ESO+VinRzM5piA1OzYJBEwMZNIngKJVqtBIrElnJOeVjsc8N9JKNKFRzM0hn9GmyTqB
1ugUzBOy1iACC7tmeg3knhjUtI8fQzcxAdog1fKi4KgnQCrUEwhrhA4aaMkzegxzU2p6n8i1
kyGzpHKaRK2Q8qHEUgda8Rr1auaVUzarWNFOGn6kpRHoaj4ZpGSzhKkngIquitMXQ2i8iyMJ
izB+dG8M698LDs6TMCt8DTYcuIpjaWVIL1aiTkGuhS4a1crFXsUxKwnIqclrI3tNjmnUMaiC
TkG2V0h5ejDndRnkHzf7PenZ6jwducd07HQphFFebWqAWKGfXjP5PvTElOSuKsk+YtMh8fzq
ZgW55wqxQTYDMD17Tt9TNzexHDsNGbPlPZG9dUaeQsXFxcX10gLVyJHWrLAnBaqfvvYKrGiI
z9ramq3uozA1YsQI5qGiOVQv5qFqC1TixCh7r9QGAlQGnQg+8oRFIYPNni1eENEobFA3BZl5
yUQJvQZ6pRaCWhAnYcmDRXsQK0waAjoKVq3aRPve0bAiWiY786RHMIAZmf2oiQ14BWZ6nQVQ
ySUfKMqQyddIZmSdia5yE9ijWBVcK07QgsHct0++BnMfP9aORW6MrJan7haIY9dnYBBEYUjO
UzJZwp0gwhn1nggMpihU0XOLzZZp7ScdbbIswdkT+0r5T1oLCGFAxSrYq8VrYP4ZE6uATot2
siBtG2CAyfTM1jMMYQwNQP1DnNy5BdMc7TBy4DC4uHggLDoOe06l40JmOfKqVVDIhUHZmQws
t06nJ0AIem6pWTU9E4NCsN+SYBDHYJCuRyffawrS7B5r2b2Ufz9m76ZR9nYZGRzRF1qynYqY
Vj4G3UZLTQZySzPIHSrN398Tvytyn/UGnkPFxcXF9bICFc2hovlTrhPHwXmcPazi4+MRExOD
wMBAuLu7swbJISEhDKhepGwChSnhGUBlZOAktEz6RrnKtghUMgSIkzmdHJXkkYAcAxKtmJOl
lyY/ndgzUJxgDeLxyWQokG2MegNrgEsb6tJea9SodwxtwjNyY1sGVuS4Wg3NYyLvUarQqQGD
mmyjooE4cg4dOYeBjUsEKr0EhqbWoETfJePTqoysPIBG2wgdgT2toIaSTNhqDXlfoyMAoWLH
ZrAoiN4Umquk0BrJ2I0t94+Glci16jUmi9w0Co4EpAyNUOrr0ahvQKNOKRbcNMMUGKgIQguk
ashr6rHTaBUsX8ugbiSQpjBDrcn0JCy8MFBRiKWwrGjE7XPnsDw8Gr6ecxHoH421G/fh1MV7
yCtvRA0NmUrfr/k+knOzWk4m0RgksdCwqaWmmSBdCx2tSTQDc4HqRO8YgWrmnSIQS6GM/Q4F
y3w+2huJQJTRgGbyW2og32kzgUoN6y1JPaASwAky7OtEcKXeQNo8m8CmXq2BVk1+U2oD81Tp
yG/GYLS4R+BhPy4uLq6XEajmzw9HULA/AoP8ELkgDFZ/+ctfWP5Uhw4d8NFHH7HWMzTkR3Oo
VCrViwMVC9e0BiqxpIKhBagkr4BRT0NzBFbo3KgV32MhMVCvSzOxJrJfE/PEiBAjAYNe9NgI
bbwppjZmCU2mdj43mSyAyPIPAwwDM0ggCDMQ6tkKPhNNRhbQ4rkAWnuI2Id6Bns65t2SPUQm
CSRo2FDL+vNRD4zOKPpsBAmI2o4JctNpqRGxODYR8owSlLI1/Obm1DBDntFckNPCw2Y2vQgm
ElQ9zZ763csgodWz76Whog7pVzOQevo6Lp67i6ycCtQ1CWjSymFE8b6I9Z6khG7mYdMyj6T4
PX8ToBJrnanVBJwJrFJPqN6oEY/PPF0tYUWw+lG0jhTZXgpFm1elagg8aWgIVzK2+MDQ8n1a
hAfpWCC08VhxoOLi4uJ6KYHKxcUZffv1wrvvdcDf3vqLWNjzJz/5CV5//XV8+OGHLCndz88P
J06cQF1d3XOBSngOUFEvD/UisPBNKy+TUZzo5Rwho1h9WmXSkIlPzUxFTCuIuU9mjwP13GgN
UNEcLJWylTelPSBQq9Ws/AOt+k69VxSyqFeLdTGmgGRu9GvhyZI9M4I0WRoF5gWTjYUPBSmV
WacXvWjGFqAystCSwVxtXGcejxS2ozlY0jW3eLmo98xgAU7imGi4UsDTr5GBk5GuphS9dGAe
F7BK5nrqbWnlFZLDZFoCKSrmRTOfC0/+cJ4HVCwrS6s3Q4eRXJNaaYJKKYOGieVzMd4j41Gp
m1gYmQK1SfpcjO/JHqrWoUv6h3qDaO6ZTjAyY14tySvJmNAMOILZ20WPaQYz+TjsexAkwDdY
AL7kkdLrxJwro+y1ehKoWoEuByouLi6ulxqo7Oxs8elnH+FX//kzWP3ICla9e/cGtT59+mDA
gAGsFlVAQABrPVNfX//NgUryCshApYGaARUMrSc40WOhFVt9CHIISsz5obWBmsj2TTrRK2GC
xUosyKE3PcvNosnnNKRF81moZ6ql11wLrDxpgtkbBdbgV8ea3bIJ20ijRCbRdLLXx/RELhS9
PrpCT6dVE1Ckk7J0/WzSpmAosHYl9bQUgSB7xejEXU8uu9F8n0RQJNeiV5NzqpjRHnlyrpXB
oh6UQfJGyXBpMrRzja08bXoWYhTIdyBep5bsTkDKpIBGaIJG3yCBlghyggSaLfdHeCpICRKk
0IRxmgdlmcwuCE/xAFp6n6TfgyWYCAbpsgUpn0qCLaPZDBarQE2tYBzsvmvJ74d6OfXmcLJR
yTLaJXgTYZcuMKDhYSOBbZY/xUzyPlrCFPktCBqd5IUztni8BMn7J3Cg4uLi4npZgWr27FmY
4OqMYcMHof+A3rA6dOgQ4uLiEBYWBjc3N9YcmeZT0Ryq56/yk6EKT4RqWPoKCwk+mTgNiBOx
nq6YY6vhGqREaeafMSdUa8wpzDIkyF4WtTlsZWzbGgVtgAqmduCKJRtJISi1aCxMhxZPUHue
CZNlcrkgrfwTxBIP0gRPqUDPvFMQazrB0kNFJ+4mtoLNDFRsAtebw3myN4lN+iyHS2hVYLMV
mAgt46KeNxEoW2BRMGpYaIzClEAzjUzU1OYwmxhqa4EpIwFUI1tAYHxBoBJBSmHUQaUXRMAS
pBwjKQzJvHeWfyyAyqCxyNWi+xEoZl42wfJeyGOVPE9t74FOAisJZMVkfQvwMljk9jFSE4EK
7JdGfgOsnIRKzAWTv0fyndDcK6NW1+7viHpY6YpFlVrPgYqLi4vrJQWqZcuWYPUaWt9yM/bt
3wWrt956i+VP0ZIJXbp0Yc2RacjvhYEKT9YqavFePN200j4szKK3CJvJSdVCyyo1rUX+jMBc
QSq22o0+6pknTBqDySLtiYYJLU16X2AQ0GJirSzRxAif6RnWVnJ7nRaT74sMG/K9EY9slBDR
aAZL0RvTMgZLk2FVvs8C2pR6EJ41mRufapbX/G3ap5jHZkKb0got96v1vWkz9md6eJ42fuk7
Ep68D5YeU3k7k2XCfqvjouU7EYzSI55r5vODe6e4uLi4XmagmjrVHUOGDsD7H/wDb739hphD
9aMf/YgV93znnXfQt29f1hyZhvyev8qvBajaWnsA1dYYUJnLAlh4E4SWAJ/W1NJbTsu8XtR7
Q8NXCha+agEqPAlUBsnaASp5XAKfE7m4uLi4uLi+IVA5OtqzOlSsMTLNoercuTOode3aFT17
9mR1qIKDg3Hx4kUWRvpngeppYGVpQquaQVJ+srHFe2GwgDG9lK8jVmbXMaiippcKPz4JVG3s
CaBq2YeLi4uLi4uL65sAlYfHVIwaPRxf9OiKLl0/gdWVK1dA86hoLSpvb29Wh4oW9jx48CDK
y8v/5UAlL4E3l000SiBlkOHHorBlq2PLYTS53Y3e3PbGYBF6ahWiaQNTluM2cKDi4uLi4uLi
+ieBau3a1di4KRY7dyXi2PHDsOrRowe6d+/OPFSff/45hg4dypolp6amsjID3xao2pplzpU5
h8ic52RsJ1/F4lwWINRSlwhSblVbD5WptT0BVEbzflxcXFxcXFxc3wSoaB2qkaOGsRV+ffp+
KeZQUfuv//ovVthTTkr/+uuvUV1d/WygwotDFDNz0rfFgC2Tgi0Tg2F8wizP2dJWBU+A0RNA
1SaB+8nkZS4uLi4uLi6uFwcqV9fxLIfqlf+wEnOoaFPkv/3tb/jggw9AvVWjRo1irWfOnTvH
imK+CFDpnwVRrQDK2AaW9GZrd/UV296ixxr7vCVZXWtORtej9Wq1NgUiOVBxcXFxcXFx/QuB
avp0D7bK7x/vvo0//+W/YXXkyBFWhyooKAguLi6wtbVlrWdopfTnlk14HlCZngFHDJB0ZpNL
BDxRZoBtq5NML9a4kjBMK6/Sk7PaJeCyXM9vMlq8Zsc1tmz/BIhxcXFxcXFxcT0fqCIiwrBs
+SLEbdmAxKStsKIeKWtraxbqGzRoEEaPHs2S0o8fP47a2toXBip9G7CSoYi1ZjFJRRCMWtHM
niktDNomqa+cWBiySa0TmwVLBSt1KqW4LWteqzW3/TCae+QJrLo4bTwst2uhhRcFuQq3Rf+1
lirpUhVxWkzUJPb9o/lirMWNdNPoc+qho89pVW3a15Bu07YtCy2mSe1ZXwQXFxcXFxfXDwuo
/P3nYMrUSRhrNxpDhw1s6eVH61C9/fbbrA3NnDlzWMjvuWUTngJUlh4mWoHb7FPSEziiVcIF
tWi6JrFCugVQWdapUmoNrHI221/QwqhqIMfQsH51BnPbEtpGpBkGC6BibWP0okfKID2nzZdp
JW7arkYEKakhr7QPvVYKTmKvPxGwZKCSGy7L21hu96zGwhyouLi4uLi4fphA5eBgx3Kofv6L
V8UcKlopndrf//531hxZLuxJK6VTr8zzgKp1nShT+yE75mHSwKRpFM3QTB7roa2vgK7xER4W
5ODSpUtIuXwNd/JLUakwsrYtOgZHknfLoIa+qQaCuhGqxlqUlRajqKgQ9+9nIS/vLvJyM1FQ
kIf8/EJk5xSisLAMZZUNqGvUoVllZJDV4qFqaRQst1ehcNTSC7DFS9UWkChMyasfnwdTHKi4
uLi4uLh+mEDl7OzIalDR/KnX//v3sFqyZAlCQ0Ph5eWFcePGwcnJiTVHftGQX1ugknOnxNV6
LaE9k0EJk7ZBhCliQmMVGkrzkXPjApI2bYDPzFmYOtMfi9cn4VRaPkqbTVCR4zWqdFLIUE0g
rA4mdS1qSvJw6dxx7N+zHUnbN2DblrWI27yOXeDGjZuxOW47du87hpRz15GTV87ASqMVxP5u
MlAJSgh6BWtuTCGpLUzJXinWRFeCLdnaQpf8eXuQxcXFxcXFxfXDA6qlSxcjelEkFi+JwoqY
JbCaPn063N3dWUK6nZ0dg6p58+bhzJkzz289802BSt8Ek1FBHhugqCjAg9uXcGT7JoT6eGPY
wOHoP9QObnMWYPXO00i9V4n7tQbUKPRSo1sCVPp6AlVVqCpMw6kjCYjfsASLFgQgMsKPQKE/
goIC4O8fQMYfhXUbknDo63O4nVGEB8W1UCqNFkClgWBogFHXiKbGWnaD6urqGEDSx6amJmg0
GrOHSgYrOQRK36feO7pfSUkJysrKWImJ+vp6ch4l21b+Ari4uLi4uLh+eEA1a5Y3pntNxTQP
N3h4urfkUNE6VO+++y769evHVvnRXn50x38GqNjJLcN9RhVMBF6YEZgy1pfg/q1zSNmzDTHB
c+BuY4MvuvTEp90HYqD9dHhEbMSmozdwOb8GZY1aVhrBBBUEZRl0tfkozkrF6YMbkRS3GMsW
BmBpdAiWRIdjQWQYgkPCERqxCBu37MKJM9eQU1CJikdKaPQmCcyM0GsaoVPVQKuqRfrtG7h+
/TouXLiAs2fPspY7mZmZqKqqYlDV1ttEgamyshI5OTlISyNgd+oUK4JKj5Gdnc3gioIohSoO
VFxcXFxcXD9MoHJycmAtZ37z21/iJ6/+CFa/+tWvWEL6n/70J7z33nssKZ22oKGFPam35l8C
VNQ7pamHiQCMqakSNQW3cWb3Fqya54tZTrZwHjQYA3oNRK/+tuhh7Y4BE4IwY/F2xB25hqzS
OjSq1QyAGquzUZ53HtdObcX2NYFYPt8LC8O8sWRhMFatiMaypdGYFzofc4MisGTFRiTs+hqn
zqXhbtZDVD9uRrNChUfVlcjNuo3rl0/hfMpRJCVuxbZt27Bp0ybExsZi/fr1SExMZGUjaFse
Ck4Ukqj3qri4mAFXcnIy1q1bhzVr1mDlypXYsGEDdu3ahZSUFDOMyQntXFxcXFxcXD88oKLN
kSlQ/e73/4mf/fwnsAoMDMTMmTMxYcIE2NjYwN7enjVHpl4X6qF5JlBJdaNal0qQC2nKQEVL
JRCgUtfB2FwNdc0D5N08h22rF2PmBAc4DR0Gl1H28HLzhq9vKFzcfdFntCsGuszApMClOH+v
FKUEhhQN5ah5cBU5V5Oxe3MAZs8cQeiwLzw8xyHAzwtLIoOxeH4Q/Hy84O42iUDhXIQviMH8
qLXYnngQ165dQ152Oq5ePoHE7WsRGjYXnl4eWBVLwCh2LVatXobFiyMQPs8fAXNnEwtBSHAE
oqNjkJS8G6dTTmDvviSEhQfAyXksxowZQ84/DrPn+mPe/FDEEBjbffAgLt+4haLSCjSqtOI9
Yd9F62rvrWplgUMXFxcXFxfX9w2oQkNDEBA4h1lwyFxYrVq1CpGRkZgxYwbGjh2LkSNHwsfH
h3lonlcpXQQFuTinvk3LFzGHCrRMgknJ8p9K799F6on92LI2BgEzvWA3yhZDhzti4mRfzA+K
wsKgEExxGoE+X36CnoMHwtrNCxsP38CFjBI8zLuLkvRDyD2/AtvWusJmQg981L8TBtoNR/Sy
hTh5IAn745ZhVYgH5vtOxhwCiVMIpM2aGYGosKU4mLwZN8/vxN6dC+A50wYDxo7BUBc3zA5f
hB379mH3ng1YE+OPlUvmIGi2B8aOccFI60mwd5yJBYtW4cDXO7Bz/xoEBLvCekRPDOw/CCNH
jYXrdHdMD56FkGVLsXTLVsQfPonTt7NQ3KA2V3KnpR3M90kQSVSQjDcT5OLi4uLi+v4BFS3s
OS80EGHhwVgYPR9Wr776Kn7zm9/gzTffZL38aA7VrFmzWG7Q88omiAnnKmIKsZI5a3JsAVT0
Nav5pERFSQ4O7t2GiBB/eLi5YryDE2zGOGHQyEkYN9kfoQHzsYhQ3uwJg2Az4H0MHN4LIya6
Y1JILKI3HsTX+3ciI2ULCi8uwd5t0+A6ZyR6uw7DxABfJB/YiwdZ13H/ylFc2LkC+9ZFYHV0
JEL8wzHTYx6CfUKxaUkw9m0JQcyi8XCa8BV62Y7GUHcfLNmciCvpaSi4fxXpN/biUso2bFgZ
Beexk9GnlyP6DXLFvAUrcPbqMdzJOYbDx9Zi2VJ/hAQFEzpdCHff6XAP9obX/DDMWbYSUVt2
YufZm7hX0cBWKYrlsChMaUSTgYrcIwMHKi4uLi4uru8lUE2ePBG9vvoC//0/f8Avf/WamJT+
s5/9DLSnX6dOnTBgwAAGVLRswvNW+bUAlcoCqPAEUEHfgIKcNMRvisH0Ka5wsBkFV6dxmDpl
JqbMmIc5wUuxYvFKrFsciQVzXDDVuQ9sHYZi9MSJGDVlHqb6L8XGVStw/cQWFF1bhyO7/OAd
Ph62s1wQHrsC529chqGpCqbHBai8fQI3vt6OpM3rsChyCWZ4BCHEdx62LA/Hoe0LyHG8MG3G
SAyfOA62M+YQoEog+19FXsEV3Lt9FDcu7MH2DTGY6uYN6xGTMWqsBxbFrEdaxiWUVd1CWvph
7EhehZjlK7Bk6UoCVB6YMHsaxvnMxHj/IMxevBbxR84is6zODFQCBSoTByouLi4uLq4fClDR
HKrPOnfCf/765/jxK1awGj9+PKs9RVvODB48GEOHDmU5VUePHn0BoDJKnpenAxUtwllfU4LM
9CvYvmUt5vrOxCwvDyyNikbS9l04fy0D19LzkJWZi5zb13Ht9E7sS16K1euisWDlCrj7L4LH
nIVYuWQJLh/bhrxrcTiyNwzzlnnDM8Ibsbu34ea9dIAlvJehPvcK7p49gL0JWwikLcdsn2As
i1qGlAPJuH/7OK5fTCDHnge3ubPgOMsPnoEhWBxDgC4mDIsXzMSKqDlYHB6IQP8wBAQuxbLV
Cdj/9Wlk5KYhK/cijp3YipUrwhAY4A+fOX4YP30SHDwmYMwUN9h7ecNnwXLEHTqDjNIaaJ4A
Kp2YRyUBFQ/5cXFxcXFxfT+Bytt7BiuZMNltAiZNHg+rHTt2YOPGjSyPysPDg9Wh8vPze6FV
fiZzDpVGalxsbMmjYnWojGhuqEFVeRFu37yE3TsIjCxfhA1r1+Bi6jlUVz5mTWmMcmkCowba
poeoKr2F9IxUnLlyFotjExEevR4b12/CtdSDyLu9H5fObcKOQxuwaV8cjl87i4Ly+4CmAabG
ajQ/zEDR7fM4f+oodu1Mxvq1m3FozwEU3b0OXW0hHpfdwqmUnViyeQ3mLl+KWWFhCAoPwZw5
0+Dt4Yzg2dOwYmEk4jcn4MChFKTdKUDu/WKUkGvIzr2Bk6d2kxsZg2XLliB66RIERJF9o4Lh
GxWJgKXk/a07cOD8TeRW1tFAqBmo0BaoeA4VFxcXFxfX9xaoYmKWs4Kea2NXIn7rJljRkgn/
8z//g3feeQeffvopC/nJrWeet8pPTEqXEq5lmGoDVAaNEorGx3hUWYKigmxkpqfh3p101FRW
sYbFrAimSWp4LGgBQy0MunLU1d/H/dI8pGXeR+qFu7iVdhdVZQVoeJSB6qo0PKi4h+ySeyhp
qoRCUErFQ1UwNT2CtqYElSWFyM/LQmF+ASqLi6Grr2F1sIyqChSXZuFKdhpS7tzAubRrOH/t
PFJTjyP19GFcST2Ju2nXUVjwEOVVtXhUr0SDUgO1VgGFgl5HEWt3k52Tgbs5mbiUfhXn717F
uTu3cDEjCzcLS1H4qBn1BrmchAxUulZABe6h4uLi4uLi+t4C1aRJrujdpyf++rc/szwqlkP1
ox/9CH/84x/RsWNH1stPTkqnRSyfe0KLkgBmoLI08h/BSBPTDRYmEGjSS82TNVJzZFpiwCiu
CDTVMdMbG9j7arUYImN998h7JlM9eV8JpbEJGpMWOrnRMW3EbKBlGtQMsARBJZ6P+sHoZ3Qc
UJPzKNFsUqHBRFfiGQj0yKsUBbKNIJZ9MImeMyUBPq3RIN5MsQ48Ox7YfuQzYmpiCjI2hUls
l6ORanOxXoTkmmSgYsZKJ/CyCVxcXFxcXN9noLK1HYOPOnXET197RWyOTPOmqA0aNAj9+/dn
OVS0sCfNoaKtVF74xMJTHil+GHTQqJVS2xepFx6DLQME2o6GABEFJ6VWA5WBQlQTAyqjvo7t
bzRI4EGBRdtEHtVsH62hmYALeTRpoDcQUKKVzfUGMfzIIEstQpVAngsG0ShcSSCkYvsSGNIq
odfqRJAyiEYHaCTjM1AgpFBkYNUPpPwwAVq9Bk1aCnQ6chxqAoMpakpyHAXZnsKYgexrIDsK
HKi4uLi4uLh+MEDl5zcb7lMmwnbsKAwZOgBWe/fuZZW+aTFPV1dXODg4YO7cuaz1DO1p9yKS
o1ZPfZQKfpofZYagXiWTSuytZy4SqiPPm5kXymRqFOFICo/J1dgppIhFQ3XktYZAkU70bpnD
jWJuF8ixIR2fvSclzFOJ+2mYd4rta2yBKQpW9D36mQhDT35Ox0BhjAKVhj0aW1WM15sLnopA
JV6XDFSQip9ymOLi4uLi4vo+AlVwcCCWLF2IbdvjsGfvDljRdjM01EdLJnTr1g1DhgzBnDlz
WGHPF/FQCRaBMMHC8WI2y8+f2NYCqCACiJ7BBwWhRgmoNAyEZKDSSqAiV2KnoEKBSgytST4x
1p1ZzxLBRajSSCFJkwRUIrjpyWciMKEFmMyfy0ClE8GPfqaXzCgW7BSBSvR2adn2MFeMl6/R
EqjEc+kZVMkhUS4uLi4uLq7vH1B5ek7DsOGDWNjv3fc6iDlU1H7961+zxHRa2JMmpdM6VLR/
3XNOJ2UUyd4YSGaUHqX3YWGmlm0ZXEjAYj4W25d6c2iF9WYJqPSMzvRSfpLeZJH0LnmKqOnZ
vi39BEWoEr1UkJPBBRl26Dk0zPvEIMwCqMQehc8GKnEsMJ9b9mTB3F4G7LkgfaY3byMBlQRV
XFxcXFxcXN8/oHJwsEPH998R86f+H3vvAR3Vda7vk+a4Y1xwSWzHJdf5x773JnHaTblOYid2
fO3EMbaxwTaY3nuvoiNEUaFIQgLUJYpABYGQhHrvvffe+4ykmXnmv/eZGTFWwDiB5K77y3lZ
35p6ztnnjFjnWd/+9vvJePnll5XVfT/+8Y/5r//6r9EMlZzyu5kPleGvgMr410DFdcLqeyYI
uTYFZsrqWLJU0oF9UACMqWWLzhqozCsJTZkivXnabWR02s0EVfpRoFLqoDDbFWDJYA2bT8Q4
6vBuAa4Rqyk/BX4kUA2PBSqjOTNlBiWjuRm0wbQN5vctQGWBqmvfU6FKlSpVqlSp+r8IVLNm
zWDSe3/m1dde4Ve//jnjzp07h7u7Ozt37mTRokXMnDmTTZs2KRmq9vb2mwOV4fqg9OWA6toU
mSVDJGWZbjMYLaahJp8rg7lOachoHJ2+05kzRRrx/QERGvFcaz6uCZxM+zFB2rX3TRmikdH9
jE73GUz7HDJnvpR6LfndkRsBFWZIsvTqs4QJmm4IVAYr8FKlSpUqVapU/Z8CKulD5eB4ABfX
I3h4ujPulVde4Re/+AU//elPlRoqS+sZmaHq6+u7KVDdKPP0V0B1HfCyFG8bLKvrRiwF36as
k87SA09mqdAq0DJkhqpRoMIENhKm+gU49YvPNdZZKiVLpDVDDSagMphrsPT6UZD6PFChgNKQ
+TyU6UWFmcxQpTdB3XWBSm8Og+m1wQxSQ58DKgt8qUClSpUqVapU/V8EqkWLFvDupD/xi1/+
lB//5AemGqqvfe1rSg3VM888w69+9SvFNuFvASolFzO6uk1vjmvANMKYMBtejhaZG8YWfFvq
k8xO7AZzv0BlVZ4JjPgroNLSaxwUMSKem46jGGdi8oEasQIq07aKldS1lXuW1X1md/MhcyjZ
rBsAlWbUuHPkWnZK+mrJMGj/CqiGzMXp10w+h1WgUqVKlSpVqv4PAtW7776j1FApffxkDdXT
Tz/Nc889x0svvaTUUL399tujtgk3W+VnuG6xuf5LT/lZgGq0JspUqa681pgzQAaLRYJ5Gs1i
r2BZzWc0e1RJCwSNACqNOYOFfqwFAteyYcpnVkClt9RkWQrjrbJno8fh80XpWFYcYlUTNWw2
EB2xmvKzFM7rR4FqtLefUhQ/PFqobv4JR8N6VSTmGjMlzPVZpqlDzPYLph/92gpLU32acdTN
Xm8Fb9csLEanPDEX1I8Zy+gxR93vMX9uDYLGMc8tr/VWhqbmz6zc4U3TrqaQ+vyCBdP2o4ax
euPoeVqvKFX2M8ZM9oZ/r9dZhapKlSpVqlT9PUA1Z84sXn/jVQWqnnn2ScZJR3TZz2/v3r3M
mzePjz76aLQofXBw8KYHvJltgqWtzPVCL+5+w0rmRmeyTDCY3MUlSPWJ6DQYFGiRjuXyLmsc
MmWIJCxhcS5XskYGJdujNw6hH9Fh0IjXfeL9XhFao6liSu5XazW9p9WZTUCN5hY4eiWMRtN5
DI0Mm8bJ2Jv252FHgRXdEIZhDfohrdzQxDrm/erE8YbleYlthzBN+emVEGM1Dgho6xHRp0CV
wTBaWIbeYLoeQxLe9ArhXQM6g4QemT0cuAY8cqpSZ0Br0CnO7SPm41gMTk2rJYdHi/KV/ol8
fp9Gs82EnCLFbDOhFKUNiM8HxOthvclN3kSXaIc1pv3pr0Hg6D/FwFUeu9ccpqtlASPTH6c4
plaMbWhIeT1kNkaVjvMa/RBDw+L8dAI+xXlZwHd4SAxnSMeAYplhMMMW13XpHwtSOqsYMT+q
UKVKlSpVqv4eoNq3b69SQyV9qALPn2bcb37zG6XdjHRJlyEzVBbbhC9r7PlFGhI3S51OQI64
EQ8PDyv7lMXubW1ttHe20NZTR2NnFfUtDTS1dtHWpaWtX09jv4aanh6qOjpo6Oims11DX8cQ
/eKxp72X5o4WWlob0DZ1MNTcSU93J519XfR299HfMcBgs4aBJi2drVp6+41ivyO0tAww3C1g
pFfARk+fuJELyNCNKBdJ9hSUYbl41s+/8IJbodX1/mk1OgEGOkZ0BjNgGpTUmASrYQE6wwI2
ho39ynufAw4z9AxbfLesjUUVt/c+BaqUVjmCDnQCdiQEavR6ASV6sZ3J6V2BFtnnUGbNMB0D
oxVQjU5jjijTqnJlpcFsM2G0rm0bsWT8LG7z4hwM+mvZNPH76sWxpau9To5HJ8+5X3yzXRyr
y5zFswYqg2kaV7YK0uk+B1SDyjkbTGMf0ZrO0cojbMhgmlpWzs9gzjTq/xqsrIHKGqQsU7oj
KlCpUqVKlaq/E6jWrl3NrNnTlTqqt95+41ovv0ceeQRp8ikBa8mSJbcNqORNVkreYOVAqqqq
yM/PJzc3l8KCHNJSIkhNukR6fAwZSUnkpGeTnZNHal42CblpXEmOISY1ifSMHHKzC8jPKiAj
I4u41DiuJl4lLTWL1Ix84sU+E4oLSS0oIiO3mKyMUjLSSigoa6K4tp3c0gZy86upK2ukrbKB
7tpadD1dDA30m/r26fWjECVDZ77J3wynPvdv9OLrlUbPOr1GCZMjvO5a2x0zzKAAkwmuFAiQ
STGNeD6oYUQzyKBWQ5dmmE6Ngb4BI5pBARJasXfdsNKPULGVkFkgcyUbZviyQJiS2VNWJmLK
Lgmokz10dAYBczJfJovnR6cx9WMyVNwEqJROjNfOx3J+5n+K/YSALM1QpwC9bnF9zUBlcYiX
U52GXgwj/aYMnxkg9ebspWlfOqW5tkE/MgqButH6OHOLIT2fjy8JVGqGSpUqVapU3QpQTZr0
F37ww5e47/67+MpXxzHuiSee4KmnnuL5559X6qh+/etfK/YJcipQZpRuVRJStFqtkpHKy8tT
phKlVYPsFRh1NZz4+HAS4y+RGnuVjIQ4MpITSElNICYtmqj0q1xKvExEcgTxKXGkpiYrkZgs
YCopgvD4K8QmJxOdKsArK4Mr2WlEpqcQlSjei0kk4moylxOzCEvO5nxkIudDIokKu0pM6GVS
rlyhLCuL7va2UeizBiq9Xv+lgMpyo9ePTmUaRl3aTdAzaJ76sgKO0bolK4AY7SMoGzTrRhsw
D1sK9y2rE0ePOWLuaagx71+ZZ7SqQzJnjkauFdKPZoaUKUEBe3IFpd4y5ac3Q5nFfNQMVHKa
VbZaHNKbpkh1eiUjp1RAGaxB0tL4+vOAOaIbFFApoEgW4BuvZd9M3x0yU6TBPIVrtIIuE1AN
afsV8LMGRTEEAVoaDAODN4SpL5ryU4FKlSpVqlTdKlB98MF7iv/U89/9Dk89/QTjvL29OXbs
GDY2NsydO5ePP/54tCj9Zqv8vozk9F59fT0ZGRn4+/tja2vLjh07OHr0KAHnzhKRJOAoNZHE
1BTS01NJz0gmOTOeuOyrROdEEZcfQ2JeDMnZMaRlxpEuIi0rhpScWCUysxNIzxLbi8e4jFgS
kiPFyYqIieJqTDTnIq7ic/kqrgEXOOLmzfGj7hyzO8TxQw4E+fnTVFc/ClKWrJT1BfwiKZNW
QwYGBX9olVopWfyuMxeey3Y6JtiRDZr1Q4OMaLQMDwyhH9SbarvEHV1puiwhZdhgNaVnHJ0W
1FuKz2UjafG94RH96LSeVsnySKgYVDJiQ4ZhtOI7mhEDWjEuwRxiG3P92ehUoikVJoFqRILY
aMG3FXxY6qHk+8M6U3ZrxFxzJq4VehMYKtNvGnHeIkaGtehGxDh0WiWjJM9L+Z6lhkvJpOmt
CuvN19lchC7hTHKtXozdIODNMCz2IQum0H8OFPWWjJj8zTTaG9ZP3ayGSqcClSpVqlSpugWg
cnJyYP+BvUo4uxxmnAQo2RD5nXfe4Y033uCtt94a9aH6MkXpN1NrayvV1dXEx8fj6urK+vXr
2bBhg/L8UsQV0ovzya0ooqKymLrSHOoKUqnOjqY0O4ySrBBqi66I98JpyLlEfeZFGkU0Z1+i
KS+c5vwrtGRH0JQZTlXGZSrSwqhJu0hDZgSNeQnUFGeRXpBLdFYugVFx+J67iNcJb5z2HsRx
jx3+nt6Ul5YpdV5jgcr6Qt4QqJT6eMs0lMzBjChhMN/ljdZh+ae3XjVneW4wZaaGTfVQWgEj
/XqdCK1SuI6+G+NQp6C2bgEtGiW7Mmgu3rdMjY3NlBmNY4rEDdeAyqiAmk6J0Uyb4XorCjFl
iuT0mt6UnZJF9yMC1mSdFHrrzJfODE/mbBzWmaiR0Sza2PF8bpGC4VpgBi45bajTDYvjDSmg
Zhx7XW8CU2OhyqDClCpVqlSpug1AtW7dGhYsnMO06VOZ+vFkxk2YMIFHH31U8aCSU37S6HPx
4sW3Dag6OztpbGwkMzMTHx8fdu/ejZ2dHcHBwRSVFJqmnejFqG3C2JKHUYDSULQHPaH2dJ+3
ZSj0ALoQO4zBIkL2iUcZthiD9qEPPsBw4EEGA+3pDXRiIOQYRJ3EmHEBY3Uixs4SNH2t1He0
k1NaRVJ6LhFhkXg4u+Ny2JULgSEUFBQpU5J/D1CZpvaGlKk3mZHSDg8woBlUCtF15opnvfnR
OGYFnASjYY04b5049rA5RvTKqj65wrFb8dYymrI7dIrPWsShWmCkV8mCWYBKM6gT+xEwZ/bv
YhRsNOYpNXPt0YjMJgkwkb+peQWj9fSgZUrRYLAGKr2pXspgsoLQ9Q3S3dJNU30HTQ3dtDb3
XQM15Zhy1aFG2b9eY1TCoLUupDdDlW5EydQN9mgxDBkVQJOF+4M66XavMxummsbV3NhCS3Ud
bRUVSt2bRvyWI8ODSu3ZyGjbItU2QZUqVapU/XOBStZQ/fRnP+KJb01k/AP3MO4b3/gG999/
P08++SQvvviiUpQujT1lDZVGo7nlATU1NSlTftnZ2Zw5c4YDBw7g5OREZGQkDfW1puX8Qx0Y
mwsxpoag87alddssKhe8Ten031L12as0znqNrnm/Z2Dh60rI502zfkfNZ7+lfMarFM18jeLZ
b1K19D26t88E900Yr7hizAnDONhKT08X5TUNZOWWEBMRy0kXd444Hufc2WBycvKU8/z7gGqY
tvZK6upzKS5JE9CYSEpSMqlJmWSkFZOdUUl1RaeAgn4xBj0arZ5BzRAdXa3U1JdRXJbN1ehL
JMZFkJ0SQ0F+NsU1jZR3aKgZMNIqL79BQMhAE8PN+bSXpVCSl0R6VjLxGcnEpWVQVlxDVXkT
1RJy2rvp6m2jX3xfO1CPZqCZovJCsgsLlaL+5MQU0sQfQo7YLi+/hMKymtFWPiNmN3uDwdqX
S66yE5Akpyt7+2hvbKW8sJqczBKl6D8nu1gBI+1AN/29jXR31tLWXEOjuNZ15e3UlPTQ12Zk
uM8CXSMK6OmGxDjbmmmsrSMzMYeMpBxSxZiSczJJKc4jo7qUgoZ6KpqaSU/NIjM2kbzIaEoT
4mkozKO9pZ72wU46R/rRWXlRfVmpIKVKlSpVqm4VqD799GN+9vOXeWDCvdx519cZJ+uZZO8+
mZWSHlTvvvuuYptw5coVBTBuVS0tLVRUVCgDkPVaMjvl4ODA1atX6Wlrw9jbj7GsFGNcOCPO
dpR9+CZJ//40Gc88Tt63H6Pk209QKh7Lv/0g5U9OUB5LnnyYwqeeIPuZJ0j77gRSvj+BuOce
IPb5CST94BFSXn2e8lWT0IQ4Y+ysQz/QR1NjuwIAVy9HKkB1YP9hXFw8lAyVxdbBctGsHwcG
BpQaK+sLKkOugKypLiMtOYzw0FN4uR/Caf9Odm7ZwsY1m9m0bjc7bBxwdz1H9NUsKqraqW3q
oLCqkti0RE6dPsm2A9uYuWwui9cuYsnSaSxfMYtDR5w4HxlHYmED5c2DNNQ1ou9tpzo7jvCz
brgfs8N2zwbsbDexe8cGtq7byqH9xzjpFUjwlSjyC7JorC+gtCCWyPDT2B91xGbvPlau2cji
RctZtWgBNhs24OxygrMh4UQkJ1Pd2cWAQdaDmTyllKm4kWETTKGhvb6GpJgEwi5cITQwksDT
4YSFxiorLNuaq8T16EbTL+AoNYrIS6GEnr3E6VMRnPMQ0BdWRU+juV5MgFl3RyXNDbkkxAZz
2GEfq5ZvYNWKzcxfsIgFyxax/dBejvh74nv5MldTM7l8KYqk8BgSz54nzO04592OEnTak/TC
TFMmS68bneK0WHMYDIabArHalFqVKlWqVN0KUNnYbGHT5nVs3LSWDRvXMM7SEFnC1KRJk5R6
KlnnFBoaSnNz8y0PqKenR8lQpaenExAQoGSoHB0dFaDqbmvGONiLsTgTY6g3vduXUPDKi6RM
vJOSCffTNOFR6u560BR330ftPfdQc899lN83gdL7HqNg/ETSx99B1sN3kn7/3aTe/03SHv0a
id+/n6Jpr9DnuQdjSzU6cQGa61rJzSok9nIEPm4ncXQQEHLS76ZAJeurxl5YC2jJTElC5Hmu
BJ4QAHEYN6f92G7dwor5S5jx8Tw+nTKPbTb2nDh1juDweM6FRXAy4DSOJ1yxsd/NIpu1vL1g
NlNXzGPe4sksWzKZbdtWc8DJCTcfASaR2WRlFNNR30JRZgpXgvzxcHfAbtdq7LbOZduKaWxY
tpRli9cwf9kGtuy2JfB8ANmpEUSFeuF0aCefzZnPhzMWMm3OMpYtXc3qxQtYNHsaCxctYdUW
G7wuXiS1vJr6bh2d/dem+6RR6fBgB0O9zZTkZ3PhTDCuR3044XqGM36XBVBFExsdR1lJBlXl
GURHnOew/R52bN7MxpVbWL90DzvXu+B3PJbijDa03XpaBJhJi4yQC+5iX/vYKv4IZ8xewtyF
a5TxrFi1lE07NrFupw0bbPdj7+6FvzhubEQ0cYHnOHP4IO522/A4dpDLUZeoam6gTzM4WoOl
cKCAX7lC01R7pbsuSH2Z6UFVqlSpUqUC1c2AaqW4by1aPI9lyxcx7sEHH+SBBx5Q6qjklJ80
9tyyZQsRERGK1cGtSk6nycL0nJwcxS7B3t5emfKTQNXV3oCRFoaqIhi6dID27e+T9YsHSXpo
HMX3fYXG8eOp+ub9SpTfdTdld99N0b33kn/vBLIFUGXe9wSFDz5GzeNPUTfxWaoe/BYlj4wn
54WHqf3sD3DaEWNTNSNdfTTVtJGXWUB8+GX8T7jjfPQ4Pt6nbwpUFvuEawXSutHHoYFeumpL
6awooKU0j6rcdGLDQjl24CDLFy7lk6nTWbfOhiOup/A6G8Qh1xOs2r6DZTYCGPbvZ/MxZ2wC
zrEv8DTuPgfwOL4Rp/0rWLdqPstWbGHP/lMkJZfS06Wju2dAMTKtrC4gPfE8GaGOhJ/axuG9
m5RFBO+KY306bwHOxxyJDQ8kyPs4Ozau48NPFzB1zjps9hzj/HkBM6d9sN22hjlzpzF98Ry2
Ox8lICaJtLJWaltGTH0Vpe/8QBc9bVXUVuaRHBeNl/sZ7O088PW4TEZqBRXl9RTkFZIYHU1Q
gB97t9owf/pnfPrBe3zw9p+Y+u5kFs9cwpF9x7kaEk9lQSkZCbGccnFg67plrF2ylNWrNrBi
yz5sDh7D9cRJAk/74XniuAL0sxYuZ912O3zPh5GTm09xVjIXfZw5Zb8NXxd7wi8GK35lTS3N
9Gs1owX50mxUhvzdLDB8PZBSgUqVKlWqVN0KUEnbBNkU+aGHx3PX3d9g3N0CUu655x4eeugh
XnjhBf7whz8oq/CixY1SZmFuVf39/UodlSxKlzVUBw8eHAWqjo46McAGdA0RGOMOoTn4EaWv
C1B6fBwl93+V2nvvp+7eiVQLeKq8/2HKH3iIkgkPC4h6gtwHnxXxPDn3PkbVw8/SOOEFqu99
kuJ77ibjyXspn/JrhgWkGNsbGenV0FjXTo4Eqsth+Lsfx+WwswCqgJsClXVd1VjzT6XQWq/B
ONyHUduDvruV8pwMTp86yZZ165gzay5r123i+CkvAkIusuOgPe/NmM1fps9k1e59HDodhEdm
CafzconPCCI52lWMbSurFn/CtBkLWb/FkYjILKX+ygQMOqUAvqMph8ZUb9ID9+NuvxWbbZuY
sXgpM0XY7t0hjn8M94N7WCegZfKny5i5dA8nfCOor++ksaIQL1c75s7/mA9mTmH21i0c8A/i
YlIRBZVdaIZMQNXbWUt9ZSY5GbFEhV/B0z0IlyMXuHIxn+4O6QCvp7iwBGcHZzYu38Bnk2eI
mM7sjz/h08l/5rMp77Bi4Wc42O7B+7gbIWcC8HF3ZevaVcz55FOWzV7JNhtHdh7xwe1COGlZ
2dRXlZMcFcHmtWuZJPb12cLVeAoIrGpqEeOpIy3qHEGn7An1PU7UxRDiYxPILyygqa1VsazQ
m7NUWP12NwMqFapUqVKlStXfA1RTp37Ef/3iJ0x89EETUH3wwQe89957/OlPf+L111/nzTff
VIrSpVP67QAqmeWS7uhJSUlKz0DrGqrujkZx627HUJeAMfYYQwemUf6Hp8h6TALVvdTc+wRV
9z1Hxf3fpeyBpyh+8NtKFE14lsIHXiR/wouk3vUYJQ8+Tc3471Jx1xMU3PlNUh6/g6LJP6PX
ey/GvjaGtSPUNXaQlZlPtLgRe7sc4Yj9YU6d9P5SU36WmhwJU58rXJdApetjuKOeptJccpNi
uHjWjyMH7NiyYSNrVq3F0ekYV2OTyMgvxdnDlw8+m8vr701h2eYdHDkbSmhpK5FVNeQXXyUv
xYezPntZsWwmU2csYs3mQ0RFpdLd2aO0cRnSd9HYUUFC3BlC3DZzdPM0HHat5ugxR455+nLU
wwvPk674uTpwdNdm1ixazHtTlzB9iS0nAqJoaO6htapEAM5+Zs35iD998gFT125kp+c5zsUV
kinG0jugU7ykOpoLqCiOJykujJDAYDyOX8T9WASRYSV0tRlpae4g5PwFNq+wYc5Hi5k3ZTm2
mw7i5ujE0YPbcDqwGhen9dhuX8aOjcvYsnoZaxcvYv6nM5g5+TNWz7Vhz86T7HO7gE9EEmVV
tWi6OihITWbbxo28894nTJmzgsMeAZTW1qPpbiQ3NogwL0fCfF0UQAsMvEBcUiLltdUMjAyN
+lR93jpiDEBdxwhUlSpVqlSp+luBSraeWbhoLjNnTVNi3JEjRzh06JBi7Dl//nymTJnCypUr
bxtQyexUWVmZ4kMli9L37dtnBVTNSkGzoToRwh3p3v4Reb96lJSHx1E8fgK1Dz5L8T3PU3Tv
8+SP/xb5D0yk4IGHKbr/MfHesxTc9yxZ4ydS8si3qL7/GSrveYzy8XeS8+xdlH36c/oDdmPU
tKAdGqGmsZ3ktGyuhJzj5FEHHPbb4+7m+aWASulRJ8IapmTxc6cYf1NVLulxQfiecGD/jg1s
WLGU1QJIbTZuY7+dE8EXIiitaKS5fYDQiHiWb9jKRzPmsnjdBnYcccEnNpvzCalEXPEh7NxB
XF12snT9MqYt3cSaHU7ERcXSWl1EdXEcaUlnOHPBFVu7NWxePpX5H/6BzasWcuLECcKTskjM
KSA5IYqI8x6cOmjDlpVLmTJzBdOX7eGgyzniErNIibqE837xWy+YwUfzZrPI1gGnkDiu5DRS
UNtL3+CIOLduOlvyqKmIJzn2Iqd9znD88EVOHIslPLSCliaor20gwNeDlQuWMuP9OaycvQV3
e2+CfM9y3tedAC87vE9uZ+OqGSyZ/TEzP/qQOVOnsWTmXFbPX8mW5bvYutGRdXtP4ugdzJWr
sWSlJhIefJbNmzYwZdZi5q62wdXvAuXVdWjbaimKvUCkjxOXfI4p04P+Z89xNSGO0urK6wKV
yYFeBSpVqlSpUnX7gWr7dhulKH3zlvXs2buDcbKH3+OPP674UP37v/87r776KqtWrVKm/Cwt
WW5F0oeqpqaGlJQU/Pz82L9//2hReld7k7ix9WCsTsEYdZTBfZ9S+vsnyXzqK5Q+9hC1jz9H
8UPPUPTw0xRNfIiSifdSPvEOqh+6m7oHHqJ6wiPkTLiLwofvo/TuB5Q6q+oHx1H0va9ROfMH
9J7egrG3iu7BXkpqm4hLTufihbO4H3HE/qCTABHfmwKV5fnYz2XBfnZ2MifcdrF7+2zmzfwz
773zGn956498PPkTVi7dzL49zpz2iyQlqZz8wgYuRSRx6LAza222smTtCuYJ4JmzbAMr120S
4PEZG9Z8wobdG1h7yIENxwJw8r1I+IUACq76EuK+CtsNf2HevLeYNOUNPv50Eh9/+D5L5y9m
314nPAMjuRyfSmZaLNlx5wn13Me+bSuYOmcBkxesZ+H63ey2tefgjq1sXDJH7GceM5etw84/
jKA8AVNtRhp6jYoPFuI3GegppqMlk7KCFM75n+eofSiuhxMICSymsc5AZ3sH0VEX2LBqHrOn
fsSiacvYudaOfVv2s3/bLgUutwswtFmzlq2rNrF9zXYObLNTMlgex45ydP8BbDbvZOrMdcxf
tVv8UW5jm81Gtmxbx6K1y5mzXozzkCtXEnLoau1WauGqr54nye8IEQHHCQ49T/DVSGIzUqhs
qkdgr6k9jUGvxE2BSncNqlSpUqVKlaq/FahmzZrB7//wW6X1jJz2G3fHHXdw5513KjVU3//+
9/mf//kfNm7cqBh7yuzSrUqag0rrBOlDdfbsWSUbNlqULlf5jfRirM/FmBHIsPdmSmf+mvif
P07iS98m+XvPkvr9fyP1RfH40uNkvPQgOS+OJ///e4Cif3uU/Be+RdbLT5P1k+fIFt/Jf/E7
lP7sKYrf/h71OyYxEu+KsbOUzu42CiqqiE5IJuhCIMfFDd3e3pmTngHkF5R8IVCN9aWyTP2V
lpYSHh7E0iUfMX36H3j3L7/mnT/9jvf/8g7TP53J6uVb2bvrKH7el4i4kkFqSomSIQqPiuF0
4DkOONqxbPVSpn82h4XzF7F49oficQqb7HbjGHCekxGphCZmE38liJxIL9z3zGDu5Jd5440f
8Ooff82n4odctHQVu3fs44DdURyO+xEQfImi/Aw6G/IpyQjjnN8xFq5czYxl65m5eA3zFi5j
2ZxZrJgrxrd6LRt2HsD/agZZLVo6DEYGsEyVDTCsrWGwv4L+7gbCQsM5bH8GhwPBeJ2MoTCv
WQHKuLgwfL0csdu5gW1rbdi2Zjfrl2xi6+rN7N6yiQ0rluGw5xAeR70J8b9MfHgCOckpZCbG
cSHACzvbfXw8YxmzF4rxzZrDZzM+ZvGqRWyy3c4hDx/ORCaQW1KHpkeMp7aSosuBRHkdVWqo
gsIuEJGcSFp+Dk0dbaOZKa1uBM2QlmHxOPqbXq92Ss1QqVKlSpWqWwCqyZPfV5oj333PHabm
yP/93/+tmHnKzNTvf/97pZZKZqgkUMmC8luVvPFWVlYqAzh58qTilC6n/KTPVV1VJUadNK7s
xNhYiDH3CtpLx2k+sYUy24Xkb/qUuj3zaNgzm8Y9n9G8Zxotuz8TMZPWnfNo3L2A0t3zyN8h
Ytt8SvYup/7YZnovHGYk/Ty6ykRx4+ymv6uFuro68oqKCb0cgdPR49g5uuLmFUBmVp5ynpZp
PGsPI+sVfmOBqqOjg5qaKkJCzhAQ4IGry2HsD9lhf/AQLi7H8fc7S3DQJaVuq7iogvq6Flrb
umhqbqWsopy0jFRi4qI5c+Ycp0+fJvCMLyHB54iMiSYtr4Cy+haaO3qoqSilIDORq2Fn8Pc8
irOzPUeOOXLc3Q0PT28uXQonMiKGhOQMCkvLaGluVKZSO5prxTEruRodS/ClK/idCVS+7+Nx
inMB/sqUbmR0Ah39Brq0RgaHxXkZLOdodj039gsgbleaVbsd9xDn5oKbqx9nT18k7OIVZSVo
2MUgoiIvExcTT+SVaMV9/kzAWc4HnhWfhZCanEZ+bhE1VfW0tbSLaKWmupL8vBwla3n6zAX8
/M8pLvp+fj5cCD5PVGwMGbkFFJVXUVFZS252DgmRVwgJ8MPvhAsB3qeIS4ilur7ub3I/VwvS
ValSpUrV7QIqWUMla6f+9Oc3lUzVOJkpkk2Ld+3axYwZMxQvKmnsKW+Wt8vYUxalywF4eHgo
NVSybisqKoqGmlpTg9uBQRE9SgG5sacaY6eAq7YMjM1JGJviBWzFmkM8bxDvNaRgrBefN2aK
7xZj7CjC2Jovvp8ntisx7UPTImBN7HO4hy4BF2VF+aQkJ3LmbCAHHY9gf/gY3v5nyBXwIrNo
FqCyvnASrmRYfI2sL66sL5NQJS9uV1eX8lw2gpYhn8v35GdyylM2mbYUt8uQz6UxqPye3I98
btmHfLSYiVrc2+X35Xtyf7LIX0KqzB7Klj5yOlXCorSmsNS8WcZuqf+S5yfHJb8vQz6X78kZ
3cGBEWXFntIqx9wWx6jMhw0rzZ2HhnspKy/kcngoXl4CHF3dcHF2x9NDgNWZILEv0/lJewz5
KH9v6TsmH+V4JaxaeiVah3xPfiZDbievgQz5WrYCskw35+fnK/V3QUFBCnTJvyFpvyFXjd4O
Ww9VqlSpUqXq7wGqPXt2Ye+wH2+fU8o9cpxsOfNv//Zv/OQnP+G3v/2t0iR57dq1SusZacp5
q7IYeyYmJuLu7q4Uv8twc3MjLEx6GuWRnpJLRnImWYkpZCXEkZcYRWFyJMXJl6nJiaU2W0Y8
NdmJIlKoys6gKiub8uxsCnMyKczNoigvW4kC8To3M43stCQyUxIoyE4n/uoVQs/54XfKlSMH
97J3m/R72o2f5wnKSotHe/lZWyJYLqClGN0Cl9afy++PzWoZx7h2y+0sQGa9/dj2NhZLBsv3
Ld+VkHQ9c1G5bwlFljFcz83delzycwk9MqzPU7b1kzAlHdItQCV7FOoNWnR68V3dID297dTV
V5Gbmy1AOJrQkMtcjYonJ7tAjO3zx5VjkcewFPBbQ6l1WN6/0fWwnJ9c0CDhKS4uTgGr1NRU
ioqKFChUpUqVKlWq/reAaunSxUx678+KF9Vzzz/NuK997WtKDZU0+Hz66af52c9+xpIlS4iN
jb15L7svIXlzlTe/vLw8AgMDlRoqmQ2TBp8nTpzC1+ccPl6BeJ0KwMvDF29PL077+iiruIIC
A/Dz9RDhiZ+PL76+/uL7Z0zb+AThJcL1hB/HPf056XsWn9OB+J29oExv+QecUYrgz54+g8ep
Exw/dhhnp0MKUMnwOeHMpeBApZ+gBTCuB1SW5zcCIgkOcrvrhQXELNBjASzr7SU0SKCTn91o
itFyfGu4sxzD2nB07PHlPi2fW2/7uYzbaMNma7gTY9drFZgyMCRCZu70Yn9aOjq6BCA30t7W
bWq4PDTyV9OkN+qJaIEo6+soYfF637cAoMy8yQychHIJ59cDW1WqVKlSpeqfDVRvvvkG3/23
Z0z1U18R8b3vfY///M//5Oc//7lSS/XWW28pztshISHKFNStSsKC0qZFQJXMNsgMg4Q1OaC0
lFSyk1LJik8mPS6RtNg40hLjyExNUrJMebmZpKYlim2Sle1SU9NJTckSkUNqcp7ymJ6eqbS1
kZEmnstIz8giIzNbiYTEVKLjk5SITUwhThwvKS2T3MISKmrq6ejsHr3JW9/Yvyh7cj2wsmw/
9oZ/s7jRdy2Q9GX3Y53putHYrxtjgMoEXyagkiGn/0xhMGWvkBCopb9Pi1ajU4Bq7HX7m45/
k5DAKadBJUyNzbjJvy1VqlSpUqXqfwOo1q1bw+QPJ/HTn/2IF196gXExMTGKg/nevXuZPXs2
0uhTFqVHRkbeFtsE62kvS9bBUjsz2D+AXoSutw9tZ5fSLLm9uYnmpgYaG+tpaKqns7dHie6e
PiV6ugfoldE1SH/XAIPis76udjo7xLZtLUpYapt6evsZkDd/7QiDw3oGR7gWeiPDEg40Q5/L
4tysIN26/Yw1QNwobgY/N5r6k5kbea0s03ljVyLeCPzGnofl2l8vxgLbtSySTgk59WeqpxpR
IOvaMYxoxEWUYCXHaMmwWWfmLH87lvetp/ks52jJoFlfV0smzxKWc7CeRpSP8pjWrWVUqVKl
SpWqfyZQbdmyiUP2dpw9509CYowpQ/XDH/6QV155hT/+8Y8KUMnWM7KGSm54uwZ03ekZvbi5
asXNW9wXDTrzEi2ZfZBTQXIJvPlRvtZZu15bfIR0emWVICNa9EOD10InUUk/mlW5FjfONt0I
qMYCiyUTdSPg+iKAul4t0c22swDpjTJZlgJu67ouCRry0QJg10DJ8Llpt+v9PqbPPn/tFLj6
G7JutxIWqLRMYV4PHMdaXKhSpUqVKlX/bKBasmQRH015n1dfe4Wf/fxlxn39619XevnJ5sjf
/e53+eUvf8nixYuVVX6WQufbMSDLTXIsoAj2EQBkAinpIzRshqhBEf2Yng+bPzNNUYnt5T70
OlNwg9APK6Cl2DLI1wYBGMMa03vm74g3Rqe7xgKO5bnMjIwd8/Wm1SwgYF1Qfr3s1vWyVhZI
k/AkYcgCUTf67tixXK+u63q1RterYfri8f31Cke5X5ldtM4ufRFAW4/TknUam0H7okye5bqM
XWVpea1KlSpVqlT9bwDVJ59MNU31fcVcQ/Wd73xHAamXXnqJH//4x7z22mtKDZUEKouNwO3K
UI1dAaeR023mfwpMiUcNpsyU1gxVliyVbrQ/mxVQGawASgCTJVslYcry/mBvl5K1Ut6zel+G
QT80ClRjL56aARm9CuolUKVKlSpVKlCNAao5c2bx2u9/ozilP/X0E4yTnj7ScFPWUMnM1LRp
01izZo1SlH47lqZ/maJouWRfpze1PRkymADKMuWnMT+apv3M+xx1u9Z/PisloUpmpuQUlVXc
aMrvi6ad/nWASm+O64HU2Bi7jV79H6dKlSpVqv4lgcrJyQGnw4dwc3fGP8CbcW+++Savv/66
4pQuXdOlW/qiRYu4ePGiYrh4uySnbiwrtqQho4S1ro5OOlqalUJ06fDdJIvRmxtoaG2ksb2Z
hs4WalqbzNFCXYuI5jbqRTQ2tdPU2CaintbGOmV7S1iMLxsam2lpbaextUPZpq5ZbNPeTXvP
AD1aAxpBaCM6w3Wn7/51luXrlaLzz8PRWOtxFahUqVKlSpUKVNZANX/+XD759CPenfQn3nr7
DcYJ8dWvflWpoXrxxRf53e9+x7Jly7h06dJtASrLFJ90wZaO6WlpaciVhdI6ISkpifTUNMU+
QbYhSU5OJDE5jrjkWCViU2KJSYsjJjVBRJKIFGJS0olJzhSRLb6TSWRUtNLIWRo/JiQmk5iU
QlJyqvIoXyclp3M1LpGIaLGfhGSS07PIzi9SLBOa27vo7Rv43Gq3f0mYGgUq/TV4MlwPqm60
nSpVqlSpUvWvBVRTpnzID3/073zjjq+YaqgmTpyoGHpKmJKmnm+88QYrV65Ueu3JjNLtGJCs
l5IZIwlNskGyp6en0r8u7FI4lyLjCItK5HJ0IuGx8UTFx4qI5mriVRFRxAugik+LJzYtWUSq
AKwMAVZZIvKUiErIEJGmRHRCClFxSUTFJhB1NUZpbxMbHUNoSBDnz/gTfC6Ay0FniAgNJDnm
iuKi3trSNOqUPrbI+3bYRqhApUqVKlWqVP2/B1QzZkxXVvi98L3nePa5pxjn5OTEnj17FIj6
5JNPFNsE+fx2Zajk1J50uZbtQ6TflXRKP3DgAF5eXlyJiCIpPZekzHzSc/LJzs+jsCiH4uJ0
yopTqChOoLYi1RTl6SIyqS3LobqsQEQxVSIaa6uor65QnpcW5iltaPKzMxRYkpGbkcLV8Itc
CPDirM9JxSHd7cghTrk4cdbPi+qqCsV41Np2wNo88l8DqIat4Og6MPU5qLreNqpUqVKlStW/
FlBJH6rNW9azfccW9h/Yy7i5c+cqTZE//PBDxSX97bffZunSpYSGht6WXn61tbWUlJQgmzC7
uLiwdetWpfWMbMgs3c+liaesgWpvqKCtpoD2imRaC6/QnBNIc7ovHRk+dGZ4KdGV7kNXmj+d
aadFBNKRdp6unMu0Zl6iMTWEuuRgatMu05QbQ2txKu2VeXTUlZKXnkjEpVCCLgRyysOLfQcd
2Lv/EEdc3CgqLlXA0Xr1oXVblP/3gWr4FoBqWAUqVapUqVL1LwlUO3ZsY/Wa5cydN5Np06ea
aqhkyBoq2YJGFqjLDFVYWJhSQH6rklDW0NBAcnKysppw586dSoZK7r+iogzdyCCGgXYESaEX
MDUsQKn/8lHaT++k1XMdHR5r6fJYTbfHSiV6T62m7+Ra+k6sp/fkBhqcV1HrvJaqY+upcbeh
9bQdvZFuDGUHoS1PFPf8DppqK8nKySYhJZXgy5dx8fTgsNtJPALOkpdfqNR3XQ+ovkxrE8VA
lBHTo+Hau4brhdEKZJTtROjFsXQizNBi/X352qiE5TimsIaY0RWPBuONoemvthm73xFxqGF0
ApRGxG6UFZXy+JaxKSHPT9pOmOBLrrg0rbrUm1ZXGvSjY7Gcv85sd2EwTyNeG6teCbkfgxL6
0et27Tz0o58pb8nx6s1hMFpdC1WqVKlSpeqfD1QffvgBP3r5P7j7njtMNVT33XcfjzzyCM89
9xw/+MEPlNV+sij9sgAPORV2q5Kw0tjYSEZGhlI3dfDgQRwdHZX6praOVgZHBtD1t2BsLcKY
Ekif/UrqF71F/fTfUfnBz6n+8JcifkHthz+n7sMf0zj5ZVref5m2916mVUTNu/9B9Qc/pvz9
X1Ez7Xc0L/sDjVv/RI/3CozF5zFqmxka0VLT1k5aQT7h0Rc54e2Mk/NhPH39yM3PG53aG2uf
MNbUcmwvue6uDga6W+lsqqK5TkR9HY31TdTUNlHX2EVbp4auPp0CFdJna2BomO7eLvo13fT2
tdHeVE9jfi2N2Q3kJhWRmV5CQ5sGrQCGYUEr0j1e2zeMvl8jzmOQwZ426mvKqa4qU2rS2lra
6evsHQUk/YjBDBumfz3dnbS2NNDUWEttTQWVAmCrKqpprGkSx+6kp7WXvvY+sw/YCBoBVf0C
YDr0Oro0ZqAbFjEkgKm7CWNnNUM99VRVl1Fa22GyttAMiGOK8enEd/oGle8PijFXNnRQ3tJF
fY9GMWZVxqUVNNUtjjfQjzgZAdtNVDQUUlxbRGFRCcUF5crYert7xDXqpKOvgYaOWuqaxTEr
WmmuHkDbJY7ZLYBO0y9+hyFzf0Fu6LiuSpUqVapU/aOA6ic//SEPPTzeBFX79+9n27ZtCkTJ
GqrJkycrPlSyKF26hN+q6urqKCoqUlb2eXh4YGtri729vTIF2NHRhg4tmpZy9CkhtDusJevt
HxD/wv2kf+de0r99D2lPjidVxlP3kfHk3WR/+05yv3UHBY+LeOIbZD42Trz3DdIfv4fM74wn
9z/uIeM34ylc9BNafTeKm3cD2uEhKts7SCrM43L0eU55OXLE2QFvXx/y8r4YqG60AlDCZnNT
HbkpsUSFnsHX3ZnDh/azb+8B9u61x+mIBx4+QVyJyaCospk+ARMy8zOsG6K1o56klAh8Pdw5
tt2J4zuOc8DGAYeDLoRciqGgrImOLoNpmm3ISF9HD2X5mYRd8Mb5sC1HHA/gc8qb8wEhJF1N
pam6Gf2ggD/tMEZpbCrgSIJeaVE2EWHB+Hic4JC47nu27WDfzr24OLoQei6UjMQM07Y66UZv
YNCoo088Dph9wJR/wwLSOtppK0ilJPESKVcvKmDs6n2BoPAkutpaxXcE3AwKsOvqYqSrT0Bf
M0lZpcRml5Fe2kRj5xCGEfO+BgV0dbXRVJpPQuxlDrjYYed8kIOOThx2PIbXCU/CgoOIibtI
Qko4oZdPcyUijMvBV4k4H09ieCbp8XlUlZWbmzd/cRNrVapUqVKl6h8BVHLKb8vWDaN1VOO2
bNnC6tWrmTNnjlKQPmnSJAWoZHPk21GU/UVA1d3eglHbxXBFFtpQD2rXzSD25SeJeHAcqRO+
SeYD95Lx4COkP/ioEvJ59gOPkCsib/yj5I9/iPx776L0wfEU3z+RwvsnUPio2O57d1M+9af0
ndymZFaGtSNUtHWSUJDLpZjznPQ8xNGjB/Hx9rwpUFl/Zv0o664aG2pIjLzIpUAf/E+64nLY
Ads9+9mwYTur1mxn3aa9ePqHEhmfSVF5LeW1tZRVlJKWmYBfgBu7dm5l7YKNbFxiw8oFS1m9
bDEH9u8jwP8cSYnFNNYP099jpKuzn4KCFM6dOcpB2zVs37iSXev3YLvREW/ns+SnlGAYkE7w
WtA209tWTEFGOCFn3bDftY2tq9ewZfkG7LbacmD7PnZs2Iztti0Czhy4Gh1PaU0TnbKJtH5Y
ASudMtWmVTJAaHtpqSwn/uJFAj29Oet7Gl+f03j5niM45DJttQ1019ZQnZNKWtRFwoPP4uXl
w2FXf456hHD+Shal1Z0oySKxr/aqInLjIgjx8cbp0EEWrl3Nki0b2bDDhp27d2C3dwcO+3fj
fGQ/J9zs8Tp5lEvnzxJ2+ix+rh54OnsR4BtESloxfRrxGxlu7HKvgpUqVapUqfpHAdWePbsU
kJKxR9y7xo0fP360j9+PfvQjxdhTtp6RzZFvh23CF035dbU3oeuuRl8ajzH8FP27FlD0+++T
/dx4yp56iMpvfYuiR56g4JEnKXj4aSWKH3qakgefEfEcZQ+K5xMepuaxb1Ejnpff9zilD9xF
3jPjqf/o1xi87DB2tTCkGaastYO4wlzCrp7nlIcDzk4H8BOAl5/75af8rPv0yW16utsZ7Gik
p7lKgEUFFQIcr0ZG4+R0nGUrtjBt5hI27zjEETdfvPwDOebuzr79tuy2tWHHrnVs3LSWLZvE
6x0H2bl1PVvXzWPb+kVs27SeQ/tPcuZMItW1Grr6h2kWkJSaeo6gM0642+/Fds0+ti7az5E9
HmTE5kK/AKCRHnqbcihMCyTw1G72rp/DjL+8yex332Pnys1cOHWGIO8z7Nm8hfkzpjBr1scc
dHYlJCaFnFIBRXXN9Pf3gr5HRLM4zxZ6OqvIzkjG2+M0x5y8OX8mUrwupqa6klYBlPXFpWRc
jRKgc4gNq+bx2aeTmfzhFD6dtYJla/bjcvIi2YX1DA3raKwrJ/SsB4d2bWLnmtVsWrOBWYtX
sHTrVvY67hMQdpD9B7exceNyVixfzKplS7ng70teciIlqXGEBXjh5uiAm4snV2ILaO4y0q8x
/BX0ju37p0qVKlWqVN1uoHr//UlKDdUDE+7lm3d+7VpR+oQJE5Q6ql/96ldKCxoJVF+mKPvW
gKoOXV8huqowjDFH6N//GflvPEPKM18hY+JXyBz/NYomPiSgaqKIxyh++AklSh76tgCqpyl6
+NvkPDaRwie/ReHEp8gb/wh5E+4m65kHqJ36G3Q+BwVQNTOo1VDU1kpMYQ4Xoy7gcdIRN4dD
nD5xisKbAJX1BbX0Nhx9T7a1MQxh1A9iHOynu7WV9NQMXFxPsmT5Bj76RADN/JXsOXgUd09f
dtnZMWfebD6b9Qlr1i1mp+0udh1y4fBxD06e2I+r01rsts5l2ZxPmD9rHZu3uJGc1UJzj5a2
vjIKCi6QGOnOueMO7F9xgA2f2XJo23GSItIZ6urG0NtIS2kc6VdO4G2/mq0L3mf6m6/w2R9f
Z8vcxfg5ueF9xJV1Sxbz0btv8pf33mbehk24ng0jNaeGuppOGBDnYujEOFTM0EA2pRWxhEUG
43hM/HYOFwgJzqWhphdtVysdNQUkXQrF68hhNq1cxKdT3+WPb/6e1974H977cBaz5q4T8OhK
0MVYsvIKibwarmSedmxYyRYBS+uXrGDewhUs37iJPYe24+C8G5s9q5m1YDoffPQpU6fOJcDj
LJW5+XRUZBMX7Imr/W4c7Z3wD0wiPa+LxpZe5W/M+rdSgUqVKlWqVP2jgWry5Pf58U9+oACV
Yu65YMECxTZBTvfJNjTSNkGu8pNTfrJ+6Fb1RVN+PR21AkSKMVZdxBjpQNuOKaT89+NEPTaO
5AfGkX73Vyh99BHKJj5GxSOmqBRAJaPi4aconfgE+d8SwPX0oxQ+KuKhhyh57D6Kvj+Rpum/
x+Bnj7GzgUEBO0WtzUQXZBMaGcQp98PixnwIf3ePvwmo/up7ygo3AVTDAwpQ9ba3k5WRjZu7
J8tWbmDqtHmst9mL95kgwq/G4eTiwuy5s5g2Yyrbd2zkpI8HoYmZxOXkkp0VTlKUG/6uW1m3
aDrTPl7MkpX2nL2cQ11nL0PUCQCNo7UsnLTQAFw2ObNl5n7sd7qRGJUiAKcbo6aToZYSmguj
yQg7yfmj2wV4zcZm7nS2L17AwU2b2LpyNVPfncTvf/NrXnn1Nd6bvwR73xAy8ptoa9Ji1Mom
0+1o2uKoLj9LQoof/iE+HHYL4sjxaK5cqaK9SU9fYzVZVwNxs9vBluULWbF4PuvWrWHF2g0s
XrGGpSvWs3TpevHednbsPsB+hyMccXXHz8+HoLP+eB21Z/e61Wxat178vS1n+epZLFw5lfen
/5lfv/kqv3z9fd6etBC34+eoKqgQxysk7YqX2G4Xx4864esfTXhUGYWF1UqBvrS4UJtbq1Kl
SpWqfxZQKfe8lUtYumwhy1csZpy7uzsODg5s3rxZqaOShenr1q1TitJvxyq/LwKqvvZGAQHN
GCuTMUZ40rNjEVm/+T7JT95P/mMCjh6eSME9D1F81yOU3DWBsjsnUH7neOWx5C7x/j33Uzj+
6xRN+Ar5d4q4+6uUPfJ1Sr73AA1T/huN6zaMbTWM9HVT0dRIXG4WoeHBAniO4eTgiOcpr5vW
UN0o8yFv4B3trQyKaK0ppywniyRxjn4+/uzctY/5i1YyffZCHF1OEh6TRHJGDq6nTjFrzkw+
nPoea9ctE4B1hKisQhIKCsjIuiyA6gSn3baxfulMAV6rWLfDhfOR2bQPynqmJgbaE+itiCI3
7AzOm5zYMHsnu20OcvlSJJ2tbQKGNBiHBjH2dzBYXUBF4iX8HbbhvGMFu1bOZvXcT5n2/iTe
ePV1fvXLV/nZr//Igi178L6STGn1oNiHgKkBcSxNE931EQI2PbkaJyAo2BMXj1COe8QTFVVL
d5uRvoZaJWO0Y+VMZk15hwWz57N772EOHj6FnaMbe/buY/2G1axctZQFCxczc8Eqtuy051J4
IpXlVeQmRHDm+EHst69n9cLP+GTqa/zPpF/yszd+zvdf+Q2/eGceHy60EzCaTGuzBNZWipMD
CfNxINjHneDAaC6HZZCYkEFZWdmoOevY30qVKlWqVKn6RwDV0aOHsXfYzyF7O6VJ8l/VUL32
2mtKDdU/wzaht7VJAEAnxrpcjAnn6bffSPZbvyD6u4+T+O1HSXn4EbIeeYLchx+j4KGHlQxU
4UMTKHh4ArmPPETuxPEUPH6ngK9vkDHhq2Q9+k2KX3iAol8+Td3cN9B47sXYXoWur5Pq+jqS
srMIuxzCcXdnceM/jJunJ7l5BV8IVHKl49jmyTJzJxs8l5YUccHXmyN2tqxZtJDpU6Yw+f0P
mTZ9FqvXbWbfISc8A86Tnl9EdUMzlwVEbtthw9z5swTRLmD91o2s33uArQcOss9uI/Z7l7Nz
01zmz57C/GXrsHP2J62kXvGGGuwsIivClVhfO3xsN7P2syXMmryQJUvWcNLbj6LCMgE6PeKC
Dwn4GGK4oZ6ajHiiA44T4Lwb2/Xzmffpu0ye9A6TP/yEGTNXM3fpdo6evkh6ZStdg0YGeqW1
gQ6jvpuRngya6gXkpflxPsyb455nOep6UZnya20YobuhhaggH7atmsmUd17jw8kCxDfuZ/eB
k9geOs7efXvYuHEpa9YsYv7CeUybvZz1No5cuiLb/XTRXltITmwg/sf2sG/DAhbN+zOfzvkz
78/5mElLV7J8vx/OF/IIia1AK60bDP1UZ10h+uxxIs76EB4YqUBVxJUY8vPzR73Exta/qVKl
SpUqVf8IoJo69SP+6xc/4fEnHuHBh+431VDdcccdihfVCy+8wG9+8xtxk15CcHAwra2ttzwg
eXBp7GkBKmnTIDNUEqi6O2SGqgFjWzbG7GD6/PZSsXYqKe/8jIifP0/4v3+bhJ+8QNLLz5Hy
w2+T/MPHRTxG4o8fJ+6n3yLhp0+R8B8TSf3hE6T+9FlSfvVd0t/4PqVzXqfNYTk9oa4Ye+vR
dLcqbu0xsfECCC7gduI4B1yO4ebvS1Ze/uh00dgLKGumrPv8WYc8p7jYaA7s2M6qBfP58E9v
88bvfscbf/gjU6ZOY/1mGw67uBEaGU1+eaUCVLHJyZw45Y7dgb3YbNvE8tWrmLF4ObOXLmfp
0rmsWTaL9asXsHOPDQ4nPTl54RJFDY20dzTRWZFGVrAb5w9t4JgElTlzmfTOZKbNXcBuhyOE
Xo4lL69CQKoGo7Qo0Ojpq6+hMOEK4edO4mi7geWLZwiYm8eazXtwcjmPb1AyBXXdVHcO0Tds
sso0+VgNoNNW0NedRXlFJHECdqXLve2ew5w7HUVlSQel+dVcPHsOmzULWDJnKvPmywJ8J+yP
BXDwyEns9u/BznYTm8VY5ZLSjdv34+B8msT0cgYGR+hvr6EgJZhQ7wOcctjEtk3zWLRiFsts
trLPJ5CgzHqyWoxUtEPfIGjFNahIiyQq4AShPqe4GhpNamI+hQWlShZUrrocC75qhkqVKlWq
VP2jgOqDD97jP3/wInfe9XWTsadsN/PHP/5RcUiXjZHfe+89ZfpPTtHdjtYrLS0tVFZWkpSU
hJ+fn+KSLvsHRkdH09HZjIEOjMOVGFszMOZfhIgTaP0O0ue6mx6nbfQ52DAgbrgax3VonFYx
eHgVPUdX0X50LR1H1tN/aB1DhzejPb6bgRO76PfejfbiEYw5FzA2Zwo46Ear6aW0tFxZgRfo
f5ojR46w29EeJ8+T5BTkj0LT2CyVxTbhehdVZqgy0tJxtXdg75bNrF64iIWz57Jw/gJWr1mH
7QF73D198L8QTGJWJmU1AiDKSsgQz2PjYzh79jSOh52w2WXLtp227NmxkwO2exVwORMaQnRu
LjkNddSJa9Tf08xARQ6FoT6EOOziuM1q1i+bz9RPprBo7UYOuHoKcEsmI6ecpoZe9ANGRrq1
tFZWU5adSXpcFBcvnMbHxwvvgHPKd1MLmihtGqa510CX1ojG7GyuV85vRPlddLp6WhrSSYk/
j6uTLds3bcLt6CmS4nLJy64jMU6cy5VQggN9OOXhg5OrN3ZOJ9i131GA8z7xO9vh4eFCUNB5
IuJSSM2toL5tgKFhsfeWanKSw7h8zoWL55wJueBByOUgIlLTSKtqpqzXSLOAuw6Nkfb2Tiqz
M4g554ffYXt8jh3jivTrKqiirrZJ6Rcpf0MJVDLU7JQqVapUqfpHA5WsoZq/YDYfTXmfd/7y
FuOCgoKQdVSyx97MmTP56KOPFB+qixcv0tnZecsDkuAhgSoxMRFfX1/s7OwUqAoJCaGkspR+
o4Y+Yxe6oUaMAzUY+0T01CnF5MbWeozVpRjrRTSVYGwrxtguok0+L8XQVISxJk98Jh67ysV2
JRg68tB15mHQVoor0E7ncCc1HS2kpmURfC4EPzdPjhxyYJ/TQdwCPCkoKVam9cbWSF2vbsra
NqG/v5/K8grOeXnj5eLKcfvDuDgd4diRoxxzceaEpxf+gYFciokmNS+Xiro6mjvb0Qxp0Q5r
qK6uVKD13JlA/LzP4HsigNN+wYRHJpJdVkW9ZkBcFyNdQ+I30HZiaKikIT6S1NM+hHm6cNLl
ALvtduF40o/TlxNJzC6loFwAUGsXQxodmt5B2hpaqCisoLSgjKL8CoqKaiitaaO+U0unzsig
NBo1t4cZNpt5Wl7LtjBGYz/aniqKsiI45+HA4X02ODs6cvb0Ra5GF5CSWklnew+d4vqW11QQ
HhfNCT9fjnt44B9whuDgUDIzs2lobGZQp0MrndWNBoYMw8o2ZcU5REUHkZoeRXlVMe3dXQzo
TePqlaEbobW9iaLsVKIvnOGCmztejs54u/sQHZ+twFlvn0aBKQtEWSBYTsuqUKVKlSpVqv5R
QGVnZ4vtvl1KDZXr8aOMk1YJzz77LM8//zwvvfQSv/3tb5VVfrJo/Has8uvo6KCiooK4uDil
KH3Hjh1KBuzo0aMEXbpIZHoCl1OiiIwLJSnhInlpURRnJlCQnkRWUgLJ0VGkx8eQmxJNfmYs
OVlxpGbEE5UWS0RCNOlJceSmJZCVk0haVgzxyZeJSggmMjmMqPRIwrMSCU2Ixdv/jOIQ7nrg
MIftDnL4+GFOXzyngIAlQ2VdgH69sFwPy/Oujk7qS8uozC+gPKeAiqISSotLyC8sIK+omGIB
knXtbTT3dNPR10OvdlBurMTIyBBNDY3UlldSmldGbmoJeVnVVFR10tqnU4BiUMDHsFG2WBnA
2NuOtrKCjoI8WoryqCjJJCcvU8BaOQU1XQKSNLT1ahkYMju7y/Y1Azpa6ztpaxoQYx2huxd6
NBJU/n/23gM+iuvc++emOonjVOfmOvef3OT6Oolz4+v+xk7cMMaAbWxjOqYa03tHYIqookg0
IQGSQAX1QhMCVAA11Bvqvfey2r47M7/9n3NmZnd2JWwnJu/7wXcefR7vanfmzDlnxpyvnuc5
z2ODhnyvFRxWKRmoTNJ70VJlho3rR19zEcqzryIrKRbXLsQgMuIiYuIykXirHF1dBlisPIyc
AfXtNSgoy0dJJZmLhlai7ejs0cNkpdcRE4YaoSNARaDSbEW/VoeqlhoCvM2kX3p2Taq0MqLW
NIj+wU6Ukvt6Mz4aCeeDcTv2EtITbuF2SjZKqjvYOOixsmVKBiol+KqiiiqqqKLKPwOo5syZ
hZFvvorf/+E/8fh//YcjD9VPf/pT/PGPf2RB6bQMzYULF1ic0FcVauVqaGhAVlYWYmJimLtv
//79DKgioyMQdSkKodFBOB/qi4hQH8RFnEFs5FmEng/E2bP+rKBycHAgosIDERcdjOiY8wiJ
CoFveBh8g0JwJfIyrkdcwdWoi7gUEYm48yGIDQ1BdFQYoi7G4PyViwgiYznlFwifY74I8vZD
yCl/hEWH4lZOKto721islLwYDzeBSqBSWqw4i1UsHGywwKYn8EHAgrdyzAqlJ2phQOSw+ljF
8ngiVBGxmi1izJKZfK8jMGEQi//SWCbxPEGyFNG2ieoIXBEIsdECzrxYkFhr4KGnpWMgFTSW
S8ZI9f1oBWO5oDArhSz1hVmLBMFewNgJqGi5ZI7MB0cdgTpA2wxrfz1MfU1orKlAWmoWbiQX
ITO3AW0EqHQmK0y8gUBRN3SWPnINsX6hifZLsIkld2CGgRsg/9WyuoG8dD0dLePjBHG05I6F
3JMBmAxdKC9KR2bSZeTcuIGmkgr0NnajrWkA7X0CO5+XrIiuIKXGUKmiiiqqqPLPBKrZs2ey
Wn72GCqaGZ0Gov/1r39lSnNRUZcfjXG6HxYqushR9xiNpaqpqWHB6WlpacjNzUV1dSVq6ipR
VV2KqopcVJXloLIsD2WlhSgoKUZOYQnyiktRcrcMFeUlqKm8i6rKUpRVlCOvrBo5xVWozK9B
bR55zS1FZXYRarIKUJdXgvq7FeR6dciprER2VSXS8wqRlZGH0jtFuJtFr1GCzr4OaLUapwVZ
CU+urr8hCzb94aSdcRSqCIQIHM9qB5o4qx1UZKDiJOsUD6mgLyTYoW1YJZUBiEIVATSwWnUc
ubaVEBjHrsGOkVWCKNqawIuqhCgnhfRw2ByvVgI3FNxkdx+1+FjIuRYLB6tJy9x+NC+VjcCQ
TdCDMxjQ3tKNhqZ+dPZY2TkUwsxWA9EBsVwN6a8MaHK7AgNDo9P3pGVmiZOBin5O47fIWaT/
OgjWQWh62tBeX8Piwcy0kLMBMBPwNJgU8ym5+YazMKqiiiqqqKLKPwuoPpr4PsaMHcUsVSNo
LJOfnx/c3NwwY8YMfPjhh8xCdeXKFXbi/eqQElRoSRtqFRLzOVnFtAVWC3izASajHjq9EQNG
HoNmstiayAJqIgBioOkATGKeJD2BFbKo0oVV16uHoXcQhp5emLu7QVZ52Lr7IPSTz3Q0Doln
iza1hFisojVI0JjAaQ3MGkItSq5lZqgoE0XKQCWL/N4OVLIKDsDhmYtLkGCFdwIqKIDMSsZq
M5I+WMS+2fREteQYarEyQYIeQMuTeSMgJrCCxeIxNq2V7ciz2TQExowgF4NgFK1dgkECNNYn
cpZgZJDCsrrzFrG/DGRobBPHwEd0n4lQZuNp+gSjCFTQiu+pDYx+T114RK2CA5o4wcrAj1mY
JEAzKVyIMhjK35tsYqzUABsqgTdqhbMZpOvRkVpImzwbL72WYCawZBYcwMk7AJHeD6U71jXm
TRVVVFFFFVXuN1B5eoo5qE6d9kZYeDBG0Lipp556iuWgevnll0F3/W3cuBGJiYnMsvRVhcYn
0aBvpfWAApS8e46XrCzyD8cJMFh4GHjJsgPJ4kI+s5ksInwQ0GBQIZ9rE8TFnrrBLJyo1FpE
fqdxSHppYWcuJboQmwkUUTAT8WQIUNFXOVBd/t3J1cdx4nho38hCzwoT02tKPxQDaOA1x0BK
YNCiMxmZ1coVqOzuORnK9JSeyCFGsa+QXHMDnAVGeQyCBF4GnrnkbLYBcq5JBCiLCFNkwA7L
lN06pBetPxIYsflm8CO6Jq0yTMkQxiDHKCqBMPCCo7/kh8ZBUXDSclYHYEoxTQaIkDZAQI8W
XWbzR1iKM5kZUMvAZbYDl3QtGCQrljhWEy+NGS7WNl4BsMCQDQX0/tyPWpSqqKKKKqqoQDUc
UNEqHx9OeA9PP/Pf+OOT/yXGUD300EMsuecTTzzBavktW7YMCQkJ/5cWJJukDhEk1JGVLdWi
YUOhclyQ3ArPYopsvKSSQYkwCrPwUOuQYF+UHe185d679Ms+Btvweu/zFaDAO8c9SaFQTO1j
4OVxMCedNH7nNiCPlUVlWSXlpWMd/ZTbFez3YvjznO+XzWmcyvEo2+W+9Pe8GC8Gq/je5TkY
+gw4339VVFFFFVVU+b8JVLQ48n//+Q/45rdGiDFUNJnnn//8Zzz//PMMpmgM1bp161jpGWql
UUUVVVRRRRVVVFGByhmoFiyYj3HvjMZT//OkuMuPZkQPCQlh+aFWrlyJOXPmMJcfzUPV39+v
zqgqqqiiiiqqqKIClQtQHTniCd9TJxAVHYbUtBSMoHmnXn31VRY/9eKLL+K1117DkiVLcPXq
VdVCpYoqqqiiiiqqqEA1DFAtW7YEkyZ/iFdfexnPPf8/YgzVN7/5Tfzyl79kiT1pHqo1a9bg
+vXr96U4siqqqKKKKqqoosrXDajGjRvDYqge+dH3xTiqX/ziF/jVr37FsqU/+eSTeOWVV1hx
5KSkJHXbuSqqqKKKKqqoogLVPSxUNAcVjZ/65b/9HCMiIyNx+vRpVstv3rx5mDx5MrNQUZef
VqtVZ1QVVVRRRRVVVFGBygWo9u7djX37d+HYcU+EhgVhxHvvvcdyT73zzjsYM2YMxo8fz4CK
pk1QgUoVVVRRRRVVVFGBaihQrVmzCgsWzsP0GZPxwYfvijFU3/72t/Hoo4/iT3/6E0ubsHnz
ZpY2gdbhU0UVVVRRRRVVVFGByhmopkyZxFImfPs7/yLmofrZz36Gxx57DI8//jjLR0V3/C1f
vpwB1f2o5aeKKqqooooqqqjydQSqv73yF/zn47/BY7/6BUbQGn7UIrV69WrMmjWL1fKjQEVd
fipQqaKKKqqooooqKlANBSp39x1w27IBGzauYa8jPvnkE1CdPXs2PvroI3zwwQesODJNm0AL
GKuiiiqqqKKKKqqoQDUUqNatX4XFSz7FosXzMeI73/kOfvCDH4CmT6BlaEaOHIm1a9cyl9/9
KI6siiqqqKKKKqqo8nUDqrlzZ2Pkm68ylx9Lm0CLItOknr/97W/x7LPPgu76o25AaqHq6elR
Z1QVVVRRRRVVVFGBygWo3nvvHZbY84ePfE8MTJ86dSrLPTVhwgSWMmHixImslh8FqsHBQXVG
VVFFFVVUUUUVFahcgGr79s+wbPkifDxzKqZNn4QRJ06cgKenJ0vs+emnnzKgopnSaWLPLxND
ZQPPVBaB/Car6zHyccpjBPthPFOb4DjLVZ2OtVlFBT+kR/bj7X3gXVR5HFzasLl8h2HOhb39
Lxqv69iHGz9TRRt0DpzOFYb2SzyPt5/vNAPCUFWK/Zo2+p3N/r3Ynqj3Ol6+1pBruMyP2C5R
3uY0HvkYm+A8/zZY7Up/d50T5TWVc6Ecn3MfbU59sw17/+E0x/JcDD93wz07zvdwyNid1NGO
QJ5bWYc+v6qooooqqjwIQEUTe+7d546Dh/bhyNFDGPHDH/4QP//5z5nL75lnnsHYsWOxYcMG
ZqHSaDRfDFOClakMChy5oNUmvtLfbTb2qbhYkuMEQYCFLDAGstAayKuR58EJ0mJq48QlinzO
c+QTwnMCOY4qL4jLLVmOiFLQ0zO12azSNcjCxIvn0h/yIXibvNhR+DKRj4iSc9mx9lVQgjNX
0LEv5vR7i3Sexb4A2kflOl77nFhcVO69Y46oWoiayWWMHNi8sB+2AJPWLUapLd4OJ7TPYhtk
3ki/xVcZgmQ4IEq7LavgABjBpc82TlR6Lm3PSsZqZYu9A2ro11am4rXYdTg6bTaRazlxzJDO
YzBDQYp+b4T4ns6WzczmkLOaIZjJYZw4Ixz9hdNCsPSDNw/AYtbBYLFCb+Ed8yoDDi/OjyDd
P3GM4vhpH82sn/J3NrGfvFW8d2RsAlPx/rN26BxbTfZ5YOfwivcyLEoAz8BIujbtw5DnXVCc
r1SpLXp9zmYg5+jYqyA9e6qooooqqjxYQDV79ky8MfIVFkP1b489KgalP/zww6CxVDQo/fXX
X2e7/GjahC8HVCIwgK2P4uJitomwYQcqm1UCCivrEG8HCRtMAgUkToIpDhJSMIjirDb77zIg
UWULm00vqQxi/yBQ2S1dCqASZJhyABU9X3y1/h1ARa7H3xuozHYV2Cvtrx2oOHKO2SCdOxxQ
OeDHei+g4iTlRRCBy7UZUFkdQEXbMpM2zRKoKYHKzJRn17IDlUWekmGAikKEhahJek/HT4GK
ziMFGKs4TvGectK91NnvKS/1zwmopHFQtQMVJwIdvS7to0ka3/BAZSLtWUQolC1HDNPNw0OQ
3bLEMxCS770dpuz3n7HhUKCyOubXAVRWO1BZVaBSRRVVVHlggWr69Kl49rmn8IOHv4t/+cYI
jKCZ0UeNGoXXXnuNKS1DQ2OoUlJSYDabvzRQybDwxUAlMNjhJKgSAUkQocjmACrXH9iUSo81
SipZqGySBUaCDvs5rKPWYVyESmCyOj5z8hvZoHTROJ0vHcPBZeFXWO0YvMnvXYDKYdngmDJr
FbXCmQlgmggFkLlnlhPBarfMKPslWjpMCqCSRmC35GCIlUrutmjJkYCKF608IhCLwKQENOU5
MjgwoOKdp5VCnAOo4AAqGSgYNFvtQCtbmkTwFSTYMopwQ+ZjWKASHK45V6BSAj0bl+y+43l7
3zhprqx2+IF4PRjF/jm5KSWwl4CSk863uyLtQOWw3NGx261o/HAWKhHwZRjmFPOliiqqqKLK
gwVUq1evZGVnRr31Ol5/428YQcGJFkg+dOgQi52i+aho2oSoqCjU19f/Q0B1T5efBFTU7ceW
VkEJU4IdjJxAagjgyIAkmkcc59qcLEyucUj2uByneBfnmCGnxZB3ji3iXGKL7EDwVWKobA7Y
o7Nntggw6K0w6siCa6b+Ts7hrhsSxGQib03S4ozPByqXOCNOAUfyd+LnDoiR50cW5XfibeNF
V58dmHj7fLI2ORfrjHSfIQOwBC6c5M5VgqjAkzFxAihXDgUqsX0BCpcfJ0GW4l44HS/dexkk
xedTnHsbdOSYQdIGtQY6WzjNnMMCJYOmbIlydb3K0O2Ix3J9lhQwDOe5VEUVVVRR5cEDKqoB
Z08jPCIEl6/EYcQf//hH/OEPf8CTTz7JYqjeeustrF+/nlmorFbr3w1UQ2OobM5ABQcAsY6S
cwXezOKo6CJq5cT4KaoCfw97lSJiWCDQwRTOMMBcbaRdOQYJiu/FY2SrhTNYMEiQVcAQy4dg
cwEW4avcLavC0iY43J2CCBm8DJEKmHLEdRmYilYlh4tyuKBq5wBr3g6InGxmku6dHQwFRVsK
i5xrbJnoWpRdhnB2O3ISK8quM5tNup40Tgk0wMuWPZsDpsl1OY4CJuccrC9Dl1Pwu8IVKDgg
1xWknV2sNtF1SV3Alh7Sx14RrJh1zNkl7TjeAaFyML84ZitzI4qxWfIzziusaXAGKhnE4LDi
qqKKKqqo8uAB1dSpkzFm7Ci8/NcX8fwLT4vFkb/xjW/gpz/9KZ544gl7Ys8vkzbBFaiGWDLo
osFxBI4sUtyMEbAYWCAwbzYwFcxacGYdjGYTtCYrdEYORhMPs0mAxQz7IuTswnFch7ol6W5E
iyAumiwOiVlApBgmziq6tBQxLwyoJAsXJ1lm7G0TiGTKzhNBzGpfVBXWDzt0KXfiOaxAQ4Pb
nXcNigs+nTct6Xg/eJOeBWqzuCLyKY320pNBCcMAFbMCuQAV92WgygkyZFemCAL26ygsKs7n
D+2DCFU2e3yWYLf6WMS4JTaHIi7J94uXHkobudeC1girgYPVoti1B0UcmcKaI8iuRljtmwMc
fYDDVWe3HDpckJwEVM4qQqnN0k2OJ0Al9JH+aqHXG9E3aIWG9MmouO/OFiXebgETnyGLI8bK
pgQq3slNqQxmFxRuS1VUUUUVVR48oJo06SP84Y+Pi4WRqT7//PN47rnnmL700kt45513WG2/
27dvf2EtP6cAbOXuNxegMpsM0Gv60NvRgrb6StSVF6G8MBt3c9JQV5qLyrv5KLxbipziCuQR
LSypwt3SKpSX1aCnW4PeLg36u/ow0NWFwc4u9r6jR4+2Xj10WhMMBgMM5DqsF3agov0yS3Ak
xTsJjgVVDjR3xNxIkGQlrRBAE8/7HKCSwUtwWCXsQOXi1nHAjnLeeAn4etDXVony3Gzkpuei
pKQeDW2D6NRy6DMKDAKdLBtSkL0YwD0UqJTw5gxESvej1e425aRAbbjuTuMdi70TrEifc8O4
v8SxWaVgfAIrvMm+s9OsCISnx1s0g9B1dKG9thUdrX3o6eMJTJPeKSxNssvXydUoA5Udlnh7
m8r+CTZeETPlsAjZlXn1SB/1bYSrmmHTVKOrrhD5WXlIz7qLktp2tGssDuuf3foF8Z4zoBb7
4ghYd6RmUM610/MhKDY+qECliiqqqPLAAtXixQvx7ntj8Myzf8afn/ojRtAvaLzUnj17MG/e
PEJck9guv0uXLqG3t/fLA5XCFaO0zFC3ldGgQ3d7C6oJON1JSUB8VBAi/I4j0NsD4X5HEOx3
Aj5nAnDkTCCOng7GiTPB8PMPQgDR0rtVKCOAVV1cipriEtQWlaCipBIFpc3IL2tG74AeWh0B
NgI3FpsLUPFWO1CxeB1FjJcgWRW4LwFUnAKoxJQArkDF3xOoPjdPFQUPaydqCm8j0u8Mju3z
gp9fOG6kFqKcQEa3gRP3Pco72+xB0HQBl4EKzhaUe11P4J0D5KWgeY61YZF2Fjp2poFX7HYc
FqjgBCp26xgLxCd947XkVcug1kKuTa09BhmqSBvGXgKSDQ0ouJ2FopxylFX2oL7NjJ4BDgY9
mUuDUVRBCUE2J6Di2K5EODZBCA4XogjBvD2NAuufwsUotmUCemph67wLXc1t5CdFIvRcEPzP
RuNKSg7u1rY5LH72nX9wPFfS/R9+s4PDoqbYDqkwYbrEBaqiiiqqqPJAAdXBgx7wDziFqwmX
kJF5GyP+9re/4eWXX2bWKfqe7vKjeagSExOh1+v/MaBSJmWk8SgEUHo6WplVKiPxEq5FnkWY
9z5471qPvesWwG31IsxfvBxT5i/HglVu2Ovli/CIWFyNv4GiwjLcLapAcWYOUq9eRVLMBSRe
ScK1lFJcTSMLcW0rBnR6e0oFMQ6HF/M48UTNFvsWfRscqRfMBGb0Fh2MFKDYbjfSW7KA2zhy
jpUTX8lnWo1OjOuSzuMsPKx6epwgKsQge+WE09+pZU7cxEatLjybS6PRyN7LxwhWAh7GNpTe
SSBzsQuryfg/23oAQVE3kHq3BnXdWuj0FofFRspZZWHWJT0snIb1yURzepGPLIrxUReo3mhQ
zAevsM+IIMBbtDAJg2QetDQJlgOoTBSCbdCbJTcdtewRuOMNvLhzT8oJRvfGGSkwWxVzz5th
GmhFa00OCrOuISfvNiqb6tGgMaNZa4OWF5+JvpYm5CZdR3xoBK5fTMLtO3XIKetBVcMAcwGy
+8GJuz6tCisV29TAmwiUmVi6BZZ6wyaOX2uAPcdZv4WDXpkeAgoLnCC3RdofaIatIQcNqSFI
CDwAr937sXHDXhw/E47isnpwBpOYFoL2yUDzallE6DYRJSBv48zkXltAvcOusX6Ux8VNE2aF
Wp02X6hApYoqqqjyYALVihXLMOGj8fg/f3kOTz/z32IM1be+9S2W3JMGp7/55ptYvXo14uPj
/34L1TBWKkidMOk0aKktR2HqddwIP40Aj03Ys+JjrJg2Bh+/PxqvjBqH50d9iAlzlmPXYR9c
vJSAtNQ7uFtSiZKiMuTdSsW18AjEnPZDmH84/MNScSYqHenFVahrb4POZGQLG0saaSILLlld
jX0aFqtDF0GBLICcxcqARg46ZoHHdHGUrE78IFkgzdRKRXputIqvNF6LnGchCzQL0qewRRdY
efeacmeZPdCeE3fose1ojvcyXJnMVmmxtaKtNhcpFwOxb+06LJwyD2tW74RP8EUk5VegvKUL
A/160bhBIYAAnJbMtYmlFTAyi4eWjM3IObsXeaecXVIQvzLBKHWFmnUw6/rYTkETATsLhQO9
jamVgI/RLIGKIAIbYzgZSCw0YBzQEZDSmEU1k+8sZgH9HU0oyUrChfNHcfTQBgQEnUDM9Xjc
KKhAVk03mvt5GAmcdNVXIyvhAgIOHUKQbzBi4vNwI6sF+aUd0PRbRJjS69g19QTw+o0Exixi
zJxZP8jcyNTdp+FMrJ8mRaJU+r6fqJYohSr6VDJINpJx6ylIivFRRnJ/B6tL0Jd/DQUxBxDs
sQoblq7EvLmr4b7/BFIz8mDVDJBz9OLc6ChsyqBOAdzC8oWJuzEdMWjUbcnRHYL23Q7y5gO9
c6oPFaZUUUUVVR5YoKIxVNTVx+r40Riq3/zmN/jd734HutuPxlG9/fbbDKiuXLnyhcWRnXIu
ueRbkqHKIrmNaGC6caALPXUlqEiPx/Vzh+Dvvhw7F03EJ5PexUuvj8FzoyZi5vKt8I+8jJKy
anR0dKGvV4vuth7UFRYi/dIlXD4biKhzsQiMzoP/pUKySDejoacDWrLIanq70FpTi/L8Ity5
lYXkazdxJzUL6Sm3cPvGFaKXcCc9GWUVpWjp12CQdNNkMonb5c0cepo70FhWh+LMAqQmJOP2
tWRk3LyJa+S6V+KikXErGXUVFdB29ZKFlVe44T4nTQRZ8GkgPoWAjvZW5OYV4HLCDVy8egO3
bqUg+rw3PHeuxsIPJ2LC6+Mxd84qHPWPwc2iSgZURgJ53IAOmo5uVFZWIrU4B7eK7yC9KBMZ
eRnIyi9GRW0z2vt0GLTw0BJIoBnGacJUzh6iI8XyUKCyGGEe6GZAQ12wRcW5yLyTisykZGQl
piPvZhEKcxpR3WhGG4GIHgJLOnm3pcWEgZYWlNzJRXJSOhKSs5GUVYrUgmrkFdUgP68YaUlX
cf6UB7atm4F5s97E7AUTsXzbJmw9cQ7eUeQ+FDehk8a/VZciOyEGkT7HER0UifjbVUgvG0Rp
7SD6e8k9IQBu6WhBY00TsvIqEJ+Sj4vX03Gd3JObiTeQkZaOgiJy/4sLUFZfh4aWdrR09qO1
34yyNi2KOwxoIeDUbRJgspjBaXphaGlAX1MTuQ+9qO62oKaT3JPyQvTkJaDoggeCPJZg7eIl
mEWgfueB40jNzCb96INN0w8baU9T04uG8hqUFhQg98YtJEbFIiEuBkmJCcjLKURleRNam7QE
gsGS0vJ2wKU0alQkLjXaE9KqoooqqqjyYALVvHlzMHbcWyy5Jy2SPOL8+fPw9vbGZ599hgUL
FmDWrFlwc3NjmdL7+vq+4HL3is1xANWgwQwLtegw0DCTRZksTt1VaMu+jNwYb8Qd34Z9G5Zh
woz5eGfWSrgd9kMKWUAH9Ra7W4TufushoFRw/RoSz4chPiIB0ddrEZnaioz6NrTo+2EwatBA
QCk+IgK+B4/h4J7jOLD/JPbv88Je953YtXkldm5aCI9d63HG7yRik0XrVmNDHcz9vehv60RB
eh4uhF/GiUM+cN+yC3s/cyfnuWHDsiXYuGwRDu3ahoizAUi7QcCqvB7aATMMFnFHHoMqtpuQ
c2TfppYfTRcLxM/NTMXFC7E4cvQ41m7aiuXr3OC2bTvct67A4hnj8eFfXsVbT7+BaZMXwzsg
DncqG1HT3oleAgptZeXISUlBaGgI9vp4YbPnHrh5uGPrvl3w9Q9GSPhFXE3OQEFZDZq7BtBv
tEDHCTDyVubS5AXJ1UT7ZCKA2lCFwtQkJMRG4JTvCRw8sB97yT3fu34LPLYcwHHPEITG5eFG
QRfKO4EOvWhpsxIgLryViJMHDmHDmh1Yu2EfVm/zxLZDp7Df8zQ8Dx+H197t2LR0Oqa+9wze
GvmfePnNpzBy0vt4f/EGrPAIQMSNAtQ19aKlvAB3roTi6lkfXImIQWJOE/KagIpmM9pbB6Bt
rEVbSR4uRl7EsZNB2LDzONaQvm37bA/2u+/F0UPH4HvyFMLDIxn837iRhMSUNMTfzEVIQibC
UiuQ2TiIbgKEFs4KTXMFytOvIislHjfT7+BCbj2u5tehuqgAfXeTUHv7BGJPr8e2DeuwYMkG
7DpyEmnZdwBNG6xN1WjJLkfaxdsIDQlj/7/s3bITaxYswcpF87B18xoc8TyKoHNRiL+UhgIy
kN4+MVKO5rKygAbQG5ib1gFVZgm81cSeqqiiiioPIlB5eOzDocP74eN7HEHBARgxYcIEtrOP
uvpo2RmaOX3dunVkgbrBds99eaByrlsnA5UVDreTWOKDulAaYSxPRu2Ns0jy24Mj29ZhypzF
eH/+RuzwDkXG3UZoDVYxQScNHdaaUZuXh2vnzuHsXg/4HDgDzzMZOBhWgPOpOShurUd/fyty
U67h4CY3LJg8F0sXbIX7Lh8cORaAY0e94H1gEzx3LMAetwXYtm0D3A74YPeJYMSEhSErkSyy
V67B/2QAdm33xOb1u+G+/QD8vP0QSBbPk/vc4UXOObx9Azl/E/Zs3Y4A3xCkJOeiU8NhkJOC
1jmBJaUUx0kWTm0XKnJuIzbkDA7tIfC0czv27N2Pnfs9sf/YGfieC4aPtwe2LJ+POaPfx/iX
xmHG1KXwDbyAjPI65BKQuhYdjZhTvji6yx3r163CxysXYzLROWtXYtmmTdi8Yz/Wb3Znrz4B
IUjLK0anVs/cXiwgG4KUWV7sFwwadFHXa/J1JESE4gwZn8euPdiydCmWT/8Y8ybNxidz1mPV
9nPY7ZeCsJtVyKhowYCmB4MdNUiKCsTGhQsx7YNPMHP2BizZuB87jpzFMd9Q+J8ORLDvMezd
vABzJr2A99/9E0aOfxFjZ03B5LU7sdk7BvF36tDcPoiqvHRc8j8Er41L4enujlMRtxCX2YYb
mbW4lZKNO5dicD3ID177vbBpyyEs23gYm3eexFEvP3Jf/Em/z7L7FRscgbiQcESdC0FgwHkc
94/A9hMROBCejvjiLnRbyX2xmtFQlIw4/z04dcwdnn5+2B6eAs9LWbiRlEiercuoueONC8Eb
scVtPeYsWYuNHh64kHgZLZWZKEmKQ9SJAAabW3fuxv6jR+B94jROHjmGY57uOHZkJzz278Zn
Wwnkbj4A7+MRSEurQVevwOLQTBx1M5slK5VsoTIPyamliiqqqKLKgwNUy5cvxcxZ0/D+B+9g
3DujHXmoaAwVdfvRxJ40D9Xfb6EaHqjsKQOo5YYji4m1F7aBauhLElB15RQuem3A7jUL8N6k
OXh75hpsORaC28X1zEIlB/pqegaRRwDPz30Xts77FCvmrsUnq/wx57MweEReRmpVIbrIYn8r
Lgxrp8/Cu/9nNGZNX4vd+wOReLsQaek3kZscjKQID5w6uBprVi7A+LlrMGbacuzYtAF+B3eT
RX03Fs5diokffYpP5m7AEU8/pCdnoL6oEIVJ8UgJP4PAw+5Y9+k8TBr3AebPWYF9BOwqW7Xo
Mko5i9guODp+smCaB2DurEFswFFsXvYJJr83Ggs/mYMDnkdxPjYeiVnFKKlpRH5+Gs77HsFn
n6zA7HEzMfvjlTh5NhY3sgsQc/Uydq5ZiXUfT8eMd9/Gu+SGvTbxPYycPR2TlyzC4o1uWLRy
IyZP/xTjPpyBBcvX42x4DErrGzFgscIATsq5JQEVb4SlvxOdVSUoJvCZFBOJ6OBw+HodI/dg
FZZMnoTxb4zDa69MwGsfrsd7i49gjVcM/C/fRnVdOVqqsxHpewBzxr+LMX+bgMmT12CHVxBC
r1H3Yy0qy+rRWFaIaxEnsHPdBCxe+AbmLp+EhQRG13uH4FRCMe62CejXAnk3r+LEZ0uxavLb
WDZ3JgHcQByLyoZPaCKBFT8c374Ju5Z8gvVL12LJ8h1Yv/MU/EJv4k56GUrzqpCTXoK06+lI
jU3AtcAIBB85IcLXziOYu9ELyw7HIiCxBjU9HHr7OnEnwR/7Nk7CimUf4dOtGzDt8HksP3sN
52JjUZQdh6r8U7gQ6YaN29dh+rJVWLFvF0KuhCEzJQxhJ3ZhzayF+GDMFMxYsAgH/M8gJSMX
5ZUVKL17E6m3IuDrfYg8N/Mx+q1JmD5jFU76XkROXhM0eht0Zp5ZqSCX12Eldqzis6IClSqq
qKLKAwlUH5O1maVLkPNQ0YSetDDyb3/7Wzz99NMYPXo0A6qrV6+iv7//HwYqOXM6K0vHizFU
DKg4GpNSA13RFVRcOI4Lh9Zg18r5eGfSbIycsRqbvAKRWtIAk9WROVvXr0c2AbxjmzZi1UdT
MOfD+Zj0yTFMWO2PnaGxSCrPRUdbJW5FB2Pt5OkY++woTJ+0Htt3ByEzvw75BdkoSQtFctgO
HNtJgGnOFLw0/hM899ZMbFm9Cj673LB7kxsmTZiJv73yId57fwH27fXFnZs5aCu/i7KbV3Ar
1AeBHp9h5cxpePtvIzHh/TnYsMULuZWdaNQI0EvxYuJckN907RioK8TZw9uxZPp7eOuvz2L6
5I+wa98BnI24hPiMEhTWtqKqugShZ7yxcc4STBk5ibn8TgRE4kpaJvyDz2LTp3Ox6N0xeP9v
L+L11/+CF94dhRenfIBx8+Zhzsp1WLhqMz6esxSTZy7Ems07ERJzCSV1DejWG6CxGJ2AChYd
BlrryVwk4YK/D07udsdh9wPYvs4Na+d8jJnjRuON5/9KHpCRePLVT/D8R9sxcf1JHAi8iKLy
PDRWpiHo6E5MeuN1vPnCeEybugkHTsUiIacKNc1a9PcZYO5pQ8bVQDKfE7B08Uis2DIXK/Zv
x+bTUfBPqkR5N3UD25CVeAkea2dh4fiX8cnUCViz2xeHwzNw9NxlMvee2LlkHlZMGo8FH8/H
x7PXYNnG4wSobuNuUQs6GwfQWNWF2oI6lBKYSw2MxLl9B7HHbQcBzO0YN9sNH6zywXb/NCTm
1OFuaSFi/LdiyYynMXHKX/Dusrl4fccZTPG5DJ+4OBQUXEFluT/i4rZgnft6TF21BisO70HI
9VCk3wpGgJcbeeYm468vjcbYmR9j5xlf3MgrYrsXy6tSkJF+Hj7eezFj+lS8+MKbGDtuNg4c
Oo+0O43o1dLx0v8HOAfYyrUtrdavlmlfFVVUUUWV/2dA9cknczHyzVfx29/9f/jXX/5MjKE6
duwYS5Uwc+ZMTJkyhb2/du3aF2ZKZxf5nMB0Ac47zURX2CBshlZ0F95AdtRxXDy+BXvXLcJ7
k2fizalLsc7DDylkoWQ7y6QBaHt7kRkfC69Na7D0o48w56P5mL7ICzM3nsaucyFILkhHe0MZ
UmMisWXOYkx8bQLmfLwRO/YGIIFA0fWkeFyJ8sSZw0uwadkETJ36Ad6cvBCjpy7D/h3bEOpz
BL5eR7B4wUqMGTcNH5D2d+86iluJqSjOTEdSVDDCT3jAe9dmrJwzE++PfgczZywi7Z9ERnEd
GnoNMDgBlRGCpgPtlfkI9j6AlfOm4Z2Rf8XHUyfBbdtOHPL2w7mYq7iRkYubtxKxb4cbpr79
Pl576lWMf3c6fALCkZSVhQACVB5uG7F21jRMf2c0xr83BqOmfIhRBOomLlqIBevdsH77fmza
QWDC0wfBsVeQW16LLr2RWcxoOikaQwV5EbdombvvengggdhFmD5mNGZ9NA1Txn+EyW+Pwnuv
voRXn/s/ePb5N/CXt+dj9KwdmLRyPw4HRjMLVU9rCaL8j2D2++9j4piPsW71IcQlFaKmxwqj
HLhu1iI3JQr7ts7CmpXjsXj9bHzqthZL9h7DobAk5FYPoGfAiuyUa/DcsgyTX3+WXH8sVn12
GMcjUnA6PB6eXsexe/0KrJs7A4vmLsK0GUswZ8FWHDgSilvJBairaEF9dSeayprQnFmC3MiL
CDnoif1bd2DZii0YO3U53pm/CxsORyMwNgVJKYnw9lyDiR/8CW+9/zxGL5yFV7d4YvrxMByP
ikJ2/lUUl4QiOHw7lrktx8Qli7DqwHaEEqAqLk5ARKAnls//FOPGTcDEhZ9i92kfxCbfwu2c
DKTcisS1hDPwPemBRQs/wdtvf8j663smFsWlHejV8NAYOAJUgqNuJY2d4qXEoCpQqaKKKqo8
kEC1efNG7Nu/C6fPnERwyFmMoMk8aSD61KlT8T5ZKGlMFa3l9+ViqBRQ9TmFgB2dEdiuN0N/
J5qrSlCek4KrYSdwePd6zP90IRau/gwnAgkUVPZg0CSDGIeBrjrk3YxD4Ind2LlhFdat2Ugg
wgfuXkG4ejMFTU1VbPfW9fOxWDNzGSa8OZnAy2KsXLsNEZcuIjAiAD6nduPggfXY6b4Obju2
Yt2ew9i4/xji4i7iTupNJF6/gQMHDpF+LMGKletwxOsEwkMjcDkuFjHh53HO1xuH9u2C+9at
2O2+CyeO+yIwKAztXf3o1xqkQs/yGM0sM3xfZys5NwRHDx/A2pXLyIL7KdatJzeALP4nfM+w
ZKYBAX7Ys9sds6fNwLi33iHHLENQcBhuZ2QiLSMdPkePwnPvbmzduA5LyEI/Z8F8zF2yGEtX
r8aKTW7YcuAo9vqchX9sPK5n5aO0qQPdBpM9ySnNdyUu4DR9hAYdZcW4ERaIw5vXYPmMKVg8
Zy7mzJqNaQRUx48djbffHIWx48Zj0rT5mL1wDdx2HcL5mAuor69FZ1sjLsdGYiO59spla3Hw
oA/ySpvQNSimoqC5o/Q9ragvzcKVmDPYu2cttuxcjyUbyLW27sSJIAIvRdWorWtGRlIygnyO
Y9msGfhs3Xoc8zmD0IsJiL12AyGRkTh+gm4m2I4tG9yweP5SBrsee70QFhKF+CvXkZaehYqy
SpSkpqHidhpyyB8AIb6+2LxuE7uHi1a7YZP7QQSERcPr9EkCnuswdf5kjJ7+PsYvXYBF5P7u
j4rDtfRbKChKQ1HxTVyKD8L+w3vJmLfhuL83riRdRG1tEXk2YnD40H6sXbsaazevx+7D+3H6
nB9Cw4NxPjQAZ896w/OwBzZuXI8Vy9dg124PlvajorLOuRC2bNVVFFBWRRVVVFHlwQQqN7dN
WLlqKRYsnIe582aKMVTf/va38ctf/hJ/+tOf8MYbb2DlypXM5fdlLFRfRtiibnNYnGguoe7u
bjQ3VKOpKg8ZyRcQEhLEdqvdyq5Gc5+4c05MFmlm5Vl6m/KRn36ZAE4oIiKiEHnpJq7cyERu
Tib6Wuuga+5EYkQ8lk5fhteeHYU3X38H02bOweYdmwl8rSWvq+C+3w3ep48jOuEyUovLcbex
HY2tHdBqtaw/dJICAwNx8uRJZrU7cOAAdu/ejf379+PIkSNkAs8gJiYGGRkZBDDqmUuUJuuk
iUtdJ59+Rr+jx9TV1SEtLQ3h4eFsh9jBgwfh4eHB2qfv9+7dy3ZWbiWwFhwcjKqqKtYnei6N
Y2toaMCdO3cQGxuL06dPw8vLi52758Bh7CZgdygwFEHxiUgqIJBKxtNnskiuPrKQc7wDqMwG
6JrqWPxU3GlveO/diYN7d7Hru7u7Y9u2bUz37dvH5iAoKIjVdCwrK7OPsbS0FKGhoaCWzZu3
0tHUphFjx6SMXLxhAJquBpQUpOHChVAEnDsDD6/D2L7PAz5ng1gqgqqqGhTlFCDp8lXEng9H
YnwC8vPzUd/chNa+bjR2taOirgYlpXcRGx2DY4c8sX3DZuzesg0H9+3H4cOH4U0e5oiocGQm
3UBdQS566mpRW1zI0hgcOeSBLVs2Yx2BHxpAvvuIJ7YeOog1BEzXH/SAR/A5RGVlIqexDjVk
Pnr7OtA/0IWq6lIkJSfgSnwccnIz0NrWAItVz17vZKUi7kIkzgWewUmfozh4aC9279nBMuXS
uaL3jVYcoDsOc3Jy0NXVZX8WVFFFFVVU+foB1ZQpk1jZmR88/F0xhuqRRx5hMVSPP/44nnnm
Gbbbb8WKFWxhoCfeD5hyzSROldX40xNgMxJYaqtBZUUZSqsa0NBpQr/JBj0tT2IRk1/aaEZw
XTM0HZVorqtAJVmQy2rbUdnQgcaGGmi7WtHf0IykyKtYNXs1Xn/hLbwz5iMsX70OXie9cPTU
IZw6exThseeQkpaEsoZ6dJk5VgplQCdmL6fA0N7ejvLycmRlZREYuMDghwIWBQhaioeCVG1t
LQNN5Vg+T+WxU2sfPZdmoKeLr7+/P2s7ICCAtU8X48uXLzOwoCBFk4jS7OryXHV2djKYSU1N
ZUlXKVyFR8chMiEZF25n4VahCIhtGj20PIYHKt4MDPagr74CtbnpyL91A1cvxbF7LSsF6ZSU
FGRnZ6O4uJjNiUajsY+HJnstKSlhkNXV3Y9BvcBsLjJQ0Tgtm2UQuoF2AoIVyCvIxlUCPaGx
F3ApIREFJWVobW1HRzP5ntzH2vJKNNXVo6ODgOCgBjqLCTreAgNnYfmjGusbWB6x6GACcWfJ
vQgKZvMXERON64nXUF1SBE1bC2xGPbjBAdRVluEm+Tw6OhLnI0Nx+tw5+IeFsuDzoPjLCE9K
REJ+LvLamtGk16JPNwArZyQ9t0CnH0BLawMam2oJYHVLWc459p3RpCXjbUNZeTGSU64jLDyY
mXlPnfJBZGQkuy8VFRVsvujzQe+ZClSqqKKKKl9foJoxYxpeevkFFj/14588jBFHjx5ldfxo
Ms8ZM2Zg4sSJWLNmDVtYqZXkflmohoMquljxhj6YNJ3o6+lFdx9Z4Aw26ATRQkXdaDTDOj3G
ZuiBYOiG2aCBVq9Dn57HgJ5Ah64fht4OtFdU43rEZWxashkTx07DssXr4Ot3loBXGSob76Kh
rQId3Q3o0XSj16BHN03kaeFZbIvcHwoxdCGkgEUhorGxkVmu6GJPF0oKE9TqRI+hACYDj3LS
Xcfoegy9Ga2trUxp27RdaoWiEEV/l2FKtnIpr0X7RPtAj6MWkLaubjT3aNCiMbK6fxpO3G1o
UWRJBy8oYttoHjCaEb0f/EAXjH2d0Pb3sT7J1jC5LxQKdDodsybSMct9oolQ5WNMZrGgsVUu
62M2gTfpxKB8XkcgkrQ92IvWzg7UNrWiqb0LGr2J7d6kGedpCR+YrRBYJnoLi/eiubNMNOcV
LelDY8D0BnS2tqGxuhat9Y3oamtnc9be3YV+TR8Ge7sAvVYK8jay5K5trY1oI5DV2duD5k4C
mWSMHWQsreR5biLjaiSvHeR6gzQ+j/TXYjWwXF0UrAzGQaa0tA19Ps0WvRSDJsKVnjx/nQTg
m1vqGXg1Nzcz2FVC1HDPhCqqqKKKKl8voNq1aye279iCne6fYb/Hboyg7iya1HPJkiWYPHky
PvjgAwZXFKjogno/OkSFQgpdcGRoEb8TxK3jnBk8WWApQMm12eyFjmmZD87MYq8YEIAT6wPa
a7uR9ggg9DQ0ITcxA2cO+2HHehrjdAY3Um5Dz9GcTHqWA4gqrf9mkQr1GpX1/6SyMLR/wy2K
FCzu9d1QUHR8Ts+R6/d9WYvWcBau4Y6FNAcWhXKuZWdYMV+LOHe8UVTIanbUlXNR5VzI9264
6xvMYpkVVpiYlvEhUMOKPgsEPK0GtrONtzmyyTvqLbr82ByZxTll/2kMHi0bY+Hs9RjZvFBW
JM8CBW72fMh1CmmtP4GT6g472rRIdf3M0n03Se95OVD8HqqEKdlaRcHL8dnn3ydVVFFFFVW+
nkC1c+d2bP1sEz7bthnuu7aJMVQPPfQQi6GitfxeeeUVLF26lLl/7kcMlaubj1o4qLLFmjqL
mAVFXNQ5xaLHKXcH0u/ZjihODPG1KYvlSiVejFbo2gdQX1SHooy7KC+rQXtvLzmGlmAhUEOg
ihcMoBmBOGlBNUlFhGWhVhIKkXTctI9KuGE1AIcBI9mK5Dr5smVJXmzlccttyi496gp0bVfZ
Fm1HtprJi7YsvCDVjBOknNuyVcrmqKHI2qKbBARac84sQanJXqyXJiKlfZGBUb6G7AaVx+0K
euK4nK9lL7sj7SqkRQhZHUEF2MAFqDiT2V5jES4wiOHAS4Yv8hxwgpSB3wmCBPs1qVp5jqUs
MNIC1WR8OjPHVE8uZ2aTI3xpmBr6ucDmTb638hzK90x+LlRRRRVVVPn6AdXUqZPx/AtPM3ff
d777DUdiz1/84hcssSfNlk5jqO5XULrrIiwv3gwi6I9gkwr/EtjixGSURrJgmSn6yNvKqVuI
lqIxWkQAYxYHAQZaJ48t2laxaC/NXWWRCvhChi4RqGAzwWLVwmTWQW82QSuIVir+S1qOlGAl
QxSFjHvDhvB3Wab+UbVaRGW146iliBcL+Dk/CDI0iKAjwAiO18PKGe5poZKVgoI8DlerIy3W
DFdIcgIUEW6Y8YocS5WW56HsxApOm8xOkIRhVPlD3ZcsJszpGMGuVt7CnhkKWrhHe0qVay9S
WxfPW5myXXgylFEbGC1+rPhsqH7+/VFFFVVUUeXrCVTTp09lQPXDR74nBqWvWrWKWaRo+gSa
g4rqxo0bWdoEakG530Dl5NaSgYoTgYpnmb1Fpa45K3NVkcEQYBCMgghL0uJrJd/rrDrJQsWx
QsX8oAnMuyftOhvQ6QmYkYVbhi6mIgSYFC4/CniyVUo5gcO5AOln9HgKVcOBlKu6Wq9cb449
QF9qk6odOF3OkV2mjlgv2IHU7g6T4UNKVyH2UYYOMbmkQObDzOlhMA/aoUC2qLiO1XWMQ8dC
rXQci7OSx2A2G5kL196uwA85j46BWgPl+6l0MzIokqxytE3RyiY+NzLI0leDyYhBgx56i2FY
iKLWKbkduQ17+DyZCqvZ4rCsfc4rdSGK82OR2uKddqzK7cv9tfdZBSpVVFFFla8tUO3e7Q63
LRuwdt1KrF6zHCPoNnwaR0VTJUybNo3FUW3evBnJycn2heF+AZW8wMtuJN4qiNYkTrLoEDCy
2sySWtjv4G32Y6jS3+mx9Ht6HHXhUXeWzSoBl0W0VFFLDUUtE/mOLPHkd7N4HHh7DJZFLovz
oN5sClG8iyoASxbBxktqZdY6pdLPv5rwkkJxPdiBztFX3OO4e43tyx1Hv+NskKyR4u/K4xUG
LIXyTr9LR/6Dr6qooooqqvxvBKp9+/ZgD00/dGgfTngfwYgf/ehHrI7fb37zGzz11FP2Wn40
UzrdVfbPsFA5wApOLh/RkkLjnaxSmQ4XS5bSlSVZsezHCc5QoYzb4WX3jOjkcYrBEh7gdVEM
OL8XUDlDhwxVHFMZqPivOH5eKn8tusrYdeRElvJsS31xTvrK28FHCUCu4OPc/+GPdb2eMAzI
OYEUr1AGVrI17x9VVVRRRRVV/jcC1eLFCzHqrdfxH7/9d/z80R87EnvSGCqa2JMCFU2bQHMd
9fT0fOUOKV1ZyrQEcvAzdb1QFa1WNP7FzJRuYxfjWiDGBknKfqe7zgQrU1p0lh5no7E1VqqM
yVisDrNf0dgaGycVZxaPY64ZXoBJEB5ooLJbqYbo8JYch6XKoV/VOmWDhSmkUkMMVIcDKrnm
owKoOEm/DFDd61gGNXbSEtVxTVerlAxSchoJCaj+UVWBShVVVFHlfy1Q0aD0Z597ypHYk8ZM
0VQJb7/9NkaOHIl3333XXnrmnxVD5aROFirblw74leNkeGnFdLJiYegWfPuPtMDSHXJW2B54
oJJm2W5p+bxyJuJYZZDi78NVeWnHoIm1x0npEawKqLLDjR1kvgCoeEllC5R0jFVSzuZinZPv
uauVjrcNhakhNSe/IlCpUKWKKqqo8r8WqGg5OFpyZtr0SZg8ZQJG0CzdtHQGLTmyaBH5cu5c
lpeKAtU/Y5cfW9Ll4GMW2M1JKkhqU6j8GTfscSIUCUxZAktJ6Xv6mWidkhZh+h0nKn3PS+d9
HYBKHsOXGYsMXPejjpyIpAamYC5ECaikrFCCoLQWUYCxsFcRvu4FSX8nUHHDKP8FQCVZ1URr
mQpUqqiiiiqq/P1AdeSIJw57esDryEH4njqBEb/61a/w61//Gr///e/x3HPPYezYsXYL1f3I
lK7MozQ0lxI/JEGia74heRs+lPFScsJHRd4ixf4tdowjoaMITk7WDMW5Dz5MyXFRQ+OMXEHK
SXnnwPWvBFQ2HUtfIQOVWYIqO1AxSFIAFYOvzwEqzgFVgnSMebhjlakypM0ITO1QBRd3oxKm
LKJvWAUqVVRRRRVV/gGgWrp0McaMHYUnfv87/Po3j4kxVFR/8pOf4IknnmC1/O5nULp94Zd2
9ym3/lssJrZ932w1iHFWZgI/JrJwmmzslW7Htx/DadmrRTrWSo61mAEDac9Iy5iYLeCZmmAl
5xg5E6sH16/XQqM3wKwzgTOQhdQkxlFREOHvh5nm/7FlisKUVVJOoUN2uvG24fUrTIEIKDqm
MlCZPw+oeAdQyZAkg5IDku4NVGYlUPESUFGQMt8LqhRABQdQ0b7SvGQqUKmiiiqqqPKPAtXE
iRPwP0//Cd/7/rfFGKq//OUvePHFF5m+/PLLGDdunN1CdT9Kz9D8RNR1SGvP1dfX4+7du6z4
8K1bt5CYeB1ZuelMs7PvIDsrn2gBsrKp5iMzJxuZuRnIzEslx6QiOycdOeS4vDu5RAuQQzQz
J5cccwdZOeT8nAyxnWz6ezY7P/l2Km7dTkNGWiZyMu8gPzsHBQV5yC/JQ2FpwVcOzHbsnnPE
KDHLmwQqwwdnS64mZb4o2/C72Ya1LgkOoFJCCRuLTbYA8RKIiFYjyHFFdmCxDbPDDV8ACLzi
VYYUMYZKnAMXCxU+z0LFf05cFOw7A4VhQdHmcPcpQcrV5ccr5hyOuRGBytlC5RTUz99b6bGC
BIvCsDv9eAxNJTH8rkDBxt/zng/7P/c9g/a/6Jqu1+eddl2K7TmOGbJz0oZh7rtU6cAlTYfr
5gfXftk3Eqi7JFVRRZUHHKg+/fQTTJn6EcaOewtvjHwFI1JTUxEVFQUPDw8sXrwYM2fOxKZN
m5iF6n7EUNE2aAHZ/Px8JCQk4Ny5c6AFmb29vREYfA7BEWdxPioQkdERiIqORXh0HM6Gh+Fk
sB88A47jXGwggqIDERYZjKiwUMSej0RcSDRiQ+IQfT4a4eGhCI0KQUj0WQRFkraizyP20kVc
upyAC3FXEHY+HEHnAnHs2DF4HfXEqbNncOa8H4JjA3AjNR5lFSUM+uTEksMl5pRLsrimfWDZ
uW1mWGhmd5sYs8VohYEDbw+OZ0oNIsw6xon1Cel3vDK43sbggmaJt9CkpjZeUYtPWtAZNEhx
YgLH4sBki5AjqzgtKWMkbZihISe3kc87aJFmBiCkTxbyvdXMdkEaBLEANcdLGdaHK/HCSwuj
NDZ7JnTqSBXEpJ20fI9FCvK3p6OQz7fK41WoNEc0UaZrhnRH6RnxOjSjuyAYWG1AWjZHLPas
WMQ5hwuXZmK3WHnRMkZ3ehqtivp/LiVmSJ8EOheclLGfJoY1kc/MvDOsyRYvAxmTQbwmr6ib
yOop0uvS7PmCuEvVZNEzpYlpnVKDQNylyp4nZiHlWNZ+EycCubLkDv2eJbaVNmiweZT7CqXr
WszJZjBpmfXWJm3QAO/Imk+fM6aCoyg5Kz0EqQYimTOaPFeGKjMtSs45SkCJ6MTZzwNHi1EP
SiWfIM4PLyZ4pdULLOwZJs8YLW0kgasd3GSQVy18qqiiygMOVLQ4svfJo4iJjUBiUgJG0FQJ
VGkOqhdeeIHt9pNdfvcDqOhOwZaWFuTk5CAmJgYnTpzA4cOHcfbsWVy9loACAjS5pcUEuApR
mFOAorx8lBUXoLI6H7UNBbhbmoryu6moLcxEQ342mnLz0ZRThIa8EtTlF6E6Nx01hWmoLL6N
4oKbKMy/jaL8TBTkZCM3Mwe52Xm4efM2zkdEwjvAH76BAfA5dwZnw/xw5cYFAlSlnwtUyuzc
Q3cb0qzjBrJwGMniwzGoYskz6cJmEbO88xJk2C0fnAhVPFmEjEbYYYAuqDTNgwEWpjQhqVUC
L9ccWzIg8IoEpSIUUOahQeJ68p0ZWvJ5N9EeKTM8+6HfW3QMPihk8a4lXgRpMZZSWdjs5V3k
GDZOUcZGsBceVhZlli03bM7ksi3ghioFEItV3GAwpNAzBwtvkGoOSsWcWVC5MCQ7vAPEBGnX
pyMeT5CSwYo7C612GGQbGKwYWidQUFi/rAp3okFSCo7kc51Juq9OpXM4KT+aVXpPYIfCiqKv
Am+T6haKedSMvJWl7zDDFaoUu11lGHHpJy3DQ8HNwA3CKhhFqxt9biwmMq88u5ZBT0slSeBi
c+x0FX3qZE4tVlbSSQlUymLSekLLRjElv3TPxfvBW/sJgA465okXgZZWJjCzPzDMrCg5Z5PK
Q7kAlWztU4FKFVVUeVCBisZQvTd+LJ5+5r/xxyf/S4yh+u53v8vyUD355JMYNWoUAypay6+v
r+8rd4gW/6VAlZmZieDgYOzbt49lZo+OjkZhaQU05B/UPvKPuabPjMHmLhhr68DXVcLWWgFb
N9E+SXuryO+1RBth62kjv3cR7SDHkWPb6bHV5Lg6ovWwaZrJ4tdN/qHXQ6vXoaGjG8lZBQiN
u4pz56PgeyoA/r4BuBAVh4qy8s8FKieLFDAEqNhf6jYtK5djtNEFjsCVyUATcLHFZpAswjoy
PgtdcOh6Z9ABRp2jLUFhDbLXHhTsSUedFnkrXS/FWojUsqEzmVmbZhNZ9AxWGHR6WHU94A09
ZCHXsrqI/aQdqgZI4yNzwqBKuEfh4SFpLChAmJkFhC7eAg3opjAgmGA0G5hlilo0zGSsRqsA
A1nI9WYChUYzu/cOKHAFKnEvIG2bgqNFEX/FClcTorNwRnERJ30GXbzJ9cSdnFL9R4uUEZ/y
AIEIKzme5i+jbep1ZvT3KUvbcIryQ5wduMxmq2OTg5VAELVQyZBgIPdcy4tQZXKAA0d+N+qH
zpcMVBQEDcZB6HSDzolpneZWBCpq1TTLAAOezQWzCnJi4XBax5JZJV3uF7VYWZmlkYIUVTNT
Cjz0M7mWor2ckPzDS1Y915JFwtCNHiap2gCrw8hbSLsmscA2ewZMYkwcbYvcHouePJcWjj27
9I8LE4EoLa8T62gqXYu80kWowpQqqqjy4ALVrFkf45ln/4xvfmuEGEP1hz/8ge3wo4WRn376
aRaUvnr1aly/fv2+5KGige1NTU3IyMhg7j53d3cGVNT919rRywoU00XZNkAWy6oqWG8mQBvp
h37/A+j1cUfnCTd0HRe188RWtJ3YjmbvXag/uR8N3kQPbUX74c/Qf2wftH5eGAw9ioF4f+iL
rsHcUcYW0EGyIBTWtiL+ZjYiY67ijG8g/I4EIPpcNKpKK78QqJSWKieo4mntwFZYNE3o7G5D
bVMryqtrUF5eierSctSUV6OlQ4uuQTBrkBjLxDHXlbzgCXoCXwYzAyVW04+nQfYWBky0Vt1w
oCNbpnil5Uu2CFF3jLmfQNUAWfQNrF6hToIU0YVI2qQLrhRvZNRZCYyRBdDIsU0BnFS2x3n8
Lu4yCU7oZgLexTrlcNkpiia7QpVNisGR4AYKS5fFxZ0muufIfJnJuDizCFTSgizwsqWGwo5J
cmGJc2ulY7ModoEyayLdADHAahgaCPyJri3eubizwjIl6DjnvFbUukRAqqWyHRW5VWipakV7
Sy8GNQbp2VFa76T7K/WTQgy1StI5pjUjaZFuCqgUqExDxqy432ZOMnYNB7y0BqSGgFsXOjob
UVNfgYractS31KG1qwXtnS3oaG9Ge3MT6slzWVp4F4V5Zagsb0FvD8f6xe43mQNaqLq/X4OO
ji40NbeiuqYOd8kzXEae5YqKCknLUFdXQ/5AakJLcyMaa2vQXtOApvJaNJLXfs2AYmOCAB35
/4O7R9LWB3w/iCqqqKICFWbOnIHx74/DyDdfxauvvYwRFHQuXbrEXHEbNmxguahoTioKPPcj
U7ocjC5bqPbu3YtDhw4hKSmJ/QNOrQs2LVksa4pgSwiCzmMlmuaOwt3Rf0LhS/+B2lH/jdq3
niT6BGpGP4HKMU+gbMyTuDvmGRSPeQElbz+P0pEvoG7Uq2h/fzTaZ49F55bpMEbvg63yGmyW
fgYnVc1dSM0twdWE6wjyOwc/zzOIOBP+pYFKLugrTyyFF+NAF7SNeWgvS0PWnTRcvJ6EsOhL
CDkfibDAYJw/F4KM7FIUVnaguZ9nC6e4uIuuE4EWd6ZuPV5wshAolS52VFnskN096IhvsQdl
y9YFiwam/jZomhvQUdtI7qEJnf1WdOvMrJAwp++FTdcHm4ZcX2N1BHF/joWKuRdp/JIdFDgx
sJx8RjPOW6RYLDmG6p5QpbROsTQGZjGgnTqKKByQuTWKYe4ssYFg7w0nwZRFdPnJ5YOsUkwT
9SoZ9eR7Mp+CjrmizMyLZYPWLFpaqNXGYOgi89FAQL4R9V19aOzToVOjJX3nnS1Jipg1k5Fn
MWYcmSeL0Ybuhj6kX07DFf84pMYkoSSnjMBFB4NXzmpkNSNloBKUmf4lF5djfkVrVq9Bgz7y
HOgFceejfb6Ee7h64RwTRsfa1lSJW7eTEBkbgys3biC7pBjFBIBy83OQm5OJzNvJuHEpDlGh
wQgPDsPlSzdwJ6cKlfXd6O4fhI48F30D/aiqqiD/UKQiKTEB8VcuICY6EqHng1mMZVxcHPl3
4gqSk2+yDSN3MnORnJiC5CvxuB53AbeTk1BbXwcdLY4tAbz8jAIumesVJYhUUUUVVR5UoPLx
8cYZPx+ER4Qg/upFjHjttdfw0ksv4fnnn2dKLVSrVq1iu/woaHxV6ezsJH/V1uHOnTsICwtj
MEWD0lNSUtDX2y0ulD1NsGVdguHkBrTOfhVlLzyK4l9/HyX/+hBKH/0BSn/xfZT+6zdR8ssR
KP63ESh8bAQK/u07yH3s+yj8zY+R/4tHUPaTR1H3r79E9eM/QvUbv0Hn9gkwXzsGW289DIMa
8ld7F7KK7iIp+RpCAwPgf+w0IgO+GKiUsVPK4HR6TntDBcqTw5B50Y8sPIE4ejoQXifP4YRP
AAJ8/XD2dAC8fYLh5RuGEyFXcPFmHqrJX/9WTszdZBO04u43WjLHwktlccSdgVDGNkkWHhoE
Thd/uvgOkvcGuSC0VXJfUeuWrhv9HXXoqCpHXUk56msJ0LZq0KExQG+V4pGohUoGMZfFmsKD
xSqmrKCuRXuNRRabY2CBzzJcUSAQg9IdQKUMTGcBzZwiGNru6jOLfbBqAeugaDVjgKE4j7Zp
VfbNEdAux4+xeC16nJbASE87LB01aC/PRn56MgH4AhRVtqFHT6CK9cEEi6kbvX0NaGitQ3lb
N8q7yHPR3S3Ni0vNSOm6OjPPII8Cnon879BY2owLp6Lgv/UoIg+fRWbSHdTVNjF3K09dkpwE
VKSvPA26hyN2SuAVpYGs1EoluootbEODs4UKUmC5vS90unnBnmuNBtRb9ASGOltRWZCHmKhY
nPILRGz8TQLwTSiva0F2fgFup1xHUnwMLkYEIPSsN875+yLgbCD8Q6NwLuoiEm7eRlF5Kapr
q5CWfhPhYUHwO3UMPscO4cjBffA+6olDBz2wefMWLF22Cp9t20X+MIpCYmIabqWkITokCCFn
TiKSwFrGnUxmpW0lfyj1m3hxTE67KJ1TWEByB6qiiiqqPIhARWOoPpr4Pl559SW89PILGPHQ
Qw/h4YcfxqOPPorHH38cr7zyClauXHnfXH79/f1oaGiwA5WXlxfb4Xfz5k30dHeCt2jBt1XA
lHgWbbvmMOtTwe8eRslPf4LKHz+Gsod/jbs//Hfc/dHPcPfHD6Psx99lWv7II+SzH6PiX3+O
0ocfQfM3H0X3d36G1of/BXWPfxudn7wI8/nPCFA1wjZoRFtrL3IJUCUmX0JIoC/8Tp5G9PkY
VJR9PlBRiFLu+JOBisaXVRRk4KrfLoQd3Yy9+9yxcecBbN7rhX2evjjtfYoB1YpVWzFp7kq8
N2sNVu70wqUbyejsaIagbwM3QEDSrIfNYIRpUAetZhCDWj2LQeIFhYWK1Sq0slcKMCx4nQax
KwKoKQRp9Dr09zSjp7UaHfVVaKytQ01DNxq6dOg1caJFiwIVBRgjWZQHOeba4i2itYfnbPaS
PLy0DV6MwREUMMM5AZXrDj1Oir0xkrYo8A0azAQcJMue3TplItcfBKftIdcfAAz9MOs0ZPw6
aMi9GtQL5J7YWDC1w3omWmSom0xj1EJDoJSCTl+fBR2NnegoLUB1+lUkhJyE93538pz5IDDy
OkoaBtDYrSPz2k3ab0JbezmBjTLkEODIaepCo0bDYt/s8Erzm+lM5FgDega06CD3pcdoZoDQ
26tH4e0i+Lh5YueUlfBavA3Xo67hbkkFNP0DMJExcEadPT7MYtDbA+NpzjRmjZUBke4AJGNh
7kmbBXoCq/T+USsidUMq3acs2JvOoWzJNJnR09yCmsJCZF5NQHJsPM6fjYJfQAzikwpR0axH
Q4ceJWXVSLuViOT4SFwKPYnzAQfh470X7vu3YtGmFZi2ZD5WbtlM4CoYN9Nvkb+wLuCMrxeO
eGzHQffN2P3Zehzatwsb167B+PEf4PkXXsa7707GvgPHkXA9A7k5RQTW4hAVdArB587gwqWL
SEm7g8xCAvPtA6KFygmoeEemeilYXQUqVVRR5UEFKlrLjwakP/S9b4kxVDQY/bHHHmMw9cwz
z7BdfvczUzqFMpo2gboWz58/D09PT1bqhgJVd1cbDAMtMNVkQnfRCy0bP8TdV/4duT//Bgq+
8z2UfevfUPP936Py4d+j4kf/joofP4rKnzyC6h8/gppHfobqHz2K8p8T/cFP0PnNx6D/7q/Q
/71vounX30D3zKdhDdgMm7aXBRR3temQW1CGa9cvIujsSRaUHhdx+QuBymGlsdkzvdP31PKW
n56I0EOrcWL7fAJOyzFt4SqySK3DotVu2LRhM7a5bcG8+avwzpSFGDt9BTbsPYnk9Bx0E6Dq
qs1DSeplJESHIjYiFKFBwThLLQeBIQgJj0L0hcu4Ep+AmylJyLidgrysDJSXFKK+vhZtXZ3o
ofChMxNQJMBU24Ki0grcyc5C+u1rSL8Vj7S0RKRmZiDx/2fvPeDqOs68f6VsnDiucWLHTtts
kt1Ndjfvm2Q3fW0nju24ybJ6L6gioY4QTSAEkgDRBAjRRRNNojeJIiR67733DgLR25f/zLmA
sCwn3thv4vz3PvrM56J7z71nzpw5Z77nmWd+T04xt4qryK6sobiynOL8NNKSYggLDsXvij9X
vQII8AkiKDCE0LAoouLiuZl0m1spqaSmp5GZnkF9dRXDd/sEINyjv6+LegFrpVXFopTQI6BY
tkVrWwf1zS1U1TZRUllLQWkl+SUV9A2Ncm9sfH7F38IKuzFmhvuYGGinMvs2uYkxxF27pkyT
+nkHExZyQ/SPXPJyysX+7jEkwKa/v5fq2goSUxPxjwrmSnggflHhhEbEE+IfSoSHAAYbI0y1
trJ91VtoaGhhcP4yYYn5JGeXUF4hgKs6k6KCZG5nJhOVWUBUbjnp5eVUtzTS0dWpxBnlp2WT
GBtPaEgkvuI8eAQG4x8by820LLKziwVAxWN72Iyzaw7jeuQcsYExFOQV01zfQHlRPlm3b3Hn
ZixR14LwdHZWoNrd9QpXPP24FhxGYnwy2aJNi7JkEecnNpKYiFCuhwRyPfQaMQkJZBYWU9fR
SY/ol3Lq7N7UDMPjU/Meq1kB4nepKyggNTyacDc/bgbEcCMshZvxhZTUDHFvVjXdNnBvlNam
aiqLbpGRcJXo65fwumKJiaUeG7W289Lqd9i0fy9uV/0oriiipDSXpJuhRAZfIcTXBX8PRy5Z
W3LujCl79xxg5ZrNygNC0LU4SsqaaGxopSw/lfjIq+K8ueLnf5XAkCjCb6Yo3sFRAZLTsw8B
KhnQPjeqEldVA5Xa1Ka2v1Og0tDYzh9efZl//eH3+c4/foNlUsrAw8NDCRbfs2cPGzZsUIBK
eqjkKq2Pa+3t7dTUiCfl1FQFqOSUn4zXkvpXI3e7mZsSpSmVuZgLjBmvpvPVb1P9/Gep+eIj
tH75BRoe/R41j31PANXzlD/9FSoFUMlS9dQzlD39HMUvfJO8J5+l+Uvf5e7j36P9sUcofX4Z
TRv/k2m/c8x1dTPdjxhYRikoauT27RSuevvgeMEdN3tfigvLFGhSlrLD+6b5lnqnlkKVfJWx
YSkJEXhYamGqvY4NGlt4c+tu3tqyl7fWb2flilWsXvEem7fuZ8uek+zVuYC16zUBlvk0lJWQ
FuGLo8kxdI/uZdPmdfzxzTd47c23WL52A+u372TXvgNoHTzMoYMHMNQ9gYWJEZdtrQgSg19M
VDR5uUX03R1RpjEDwiKxcXDCzv4i7i524nxeVDS5AuKj8bp1myuJt7mecIuIuBh8BUwa6R9l
zaZNvPrmcl7/g9jnGytYu2Yju/fs56gAwZOGxpzQ0+f4CW3OmpqJ73iSLwb/tsY6iovyiIgM
EbDhzbXwYIqKCiiQg3taBqGRUbhf8eOSgAg3n0D8xeCaeEd8r6v3fhyVotE1xr2uRsoykkgN
C8T+lC56e/axd9M2tq7dweYNu9iz6yg2VpdJSkxhfHyS9s42HN0c2XlkL8s11rFi7xYOGOlz
4LCuaENdLHUOcvbQZva8+xK//69/56WXXufdTQc4aXYJn+sxxCfEEB3pS1SEH0HhQdj5hWDm
HohPZCR3cjJF3ygkOjwCG3MrDE7ocfzYSbS0ddh7QoejJiactXPE1cMPDyt3zmic5NzaI/jq
2RITIM5FTiHZqekEXPHA0dwcU10dNNav4/UXX+KPr7zOG6+/zYp317BTYy8mxmY42zviZHWB
84b6HNHYwZE9uzgswObw4YPoGBth7+lJXHY25QKcq3r6lJWwyiIE6UiTMgd3BylPvoPXeWvs
T5oTcvk61YVdjA7P0S9K77gKqOQqQumVGx+q5m57DkU54QRfv8w5GxM2HdrHy2tXc9jYmJCb
cbT1tonrvZ+Jex2M9TVRX5pJYqSAQpdLWJpbYCTqbXzmAg6XvEnPLGVoWAVJw/3N9HdUUJiX
qgCVlZ0Lrj5hpOc10DXAA0B13zulBiq1qU1tf+9AZWlpruTxk3FUAYG+LJMxU6+99pqSw0+q
pK9cuVIBKhmU/kmknunp6VkMSpeJmCVQOTg4KErp9/o7mZsWg21TOnPR1oydWknbyy9Q9awA
oi8/Qt8z36T1yW/T+PS3qf3q81Q/+1VRnhLlK1R/TQDWs9+g/J++TeFzz9P4xHfpeeafaPjK
lyj87heo2/FLxgLMmevpZrxvhppa0QiZVdyIS8THwxcXa298XK5TXFD+FwGVDNiXnqBL5zQ5
JYBq496tLBdA8u7O/byzUYMVK1ay4q13WbNuJ+u2HmLPMdHwzkGkJGdQmJZCoKMFR7au4K3X
f8vrb77CW++9y6pNW1i7bRfrd+xhl+ZBjosB3cL8HJfsrLA9Z8IZPW1Oi8HaSFcfMxNzLjlf
wcbdA3NnZyzFIG170Q47azPMLU9hbHsGAxdbDHy80XP3xMzJmQu2Npic0mbXjvW88u47/PK1
13nz9eWsens1WzbvQOvIcfRMTDE+LwZQMzMMThliZHiKc6dP42hlibujPdYW50S9DrPn4G72
H9XEUMCQsZGhklBbV88AHQNjTC0F1PmHEJmQQk5xJT13h+djg2ZVHqrpEbrrykiPvo63uSn6
27ehuWYdm95exbuvvMNrL78t6rWSg1raBAeF0dbeSUVtJRaOVmzcv513NAR0au/D0MEaa0dX
3C65EOhkhYf5SXR2rmTlq7/l3RUCYLQMcPKNIvpWJgmJsfj7XcbFxRorextOnHfgkIkt5y46
4OTuqqxAtbex5cTh4+zatpPDR7QxsRAQ7ObO5YAAAiJjiYpKIPByAKY7xTG/dwDno+cIuXKd
1DsZJMTEYW16hqM7d7JHwNSmd99l7TvLlT6w4t3VrFm7id27NDE+dYZLVrZcPHsWM21tDm7a
wIEtG9mzdRPbtm1hx35NtEXbOwQGcV1ctIWdnXRPq6QVlFg0KfDZ3095QiLepgJwdC8Q7hJF
Q3EvY8OqIPyJ+RyWw1M9dHUVUFt1k9RbXgLGrQR0n+W0OIe6Fhc5eUGAXeB1ssrKGBq7x+Tk
EJNDHQK+qslPjeOquwPGBrqYiD4h+9q1sBvcSS8ScDusTOAq0g5IOYsOmurLlCk/64vu2LsE
cfN2CQ2tY0uAigeASj3lpza1qe3vG6i0tY+xQ2MLK957W9GjUnSoHn30Ub7zne/w05/+VJny
O3bsmKJDJb/4cU3GUEnZhGzxxB0YGKiIekrVclVQehcTIwJ46rIZDneg/eRayn/5PNmPLaPs
H5bR+fST1H7pMSq//Bhljz9K8RNfVJXHn6Do8a9R+MQzlD73BPmPf5aKLz5K3ZOPUfyVZaT+
4LMUa/wXnb5GzA12MDowSllVKwkpecpKJS+3K7hf9OGaV8T/2EO18Jk8rtysZK5c0sfK/KB4
0j/BXkNjduoYsnG3JqtWreGdt5azY+dhtu3R4fBJSy67XhMDWxrZCfE4nzVi2/I/8F8/+xf+
8Mbv2bJnJ4d09dA6oc++o7qcNDyNtY0dN2/Ekn47kTD/K5wT8HJkz240Nmxm7XvrWbFqIzsF
/J5xuoR/eAQhYaF4utljaXManQuG7LM6zQ6bC2w9d479RsYcPynqcUCD9euX89/vvMmvBUBv
3LCNPdv2cvTICUzPW+Io4MsjIBAvAb9eAsacnS5zWl/UaesWNq9eydqV7yrLRF99+w/84a1X
ePW13/HGH1/jrbfeYtXqtQoInrdxVGCquKaZpu5BhibmBStn56f8Ju4qQq1hnk6cP7SfQ6vX
sH/teratWKcA1e9/+xov//drbN+2Gz/fQOobGxQ5AHuPS+w+cYBt2gfQv2RFwK0b5JSUUVFU
RH1hGrnxgbhbGXJEwK3WwaOcNncgvaCesvoOcnKyCLzqjp2dOYanjdl9/DTbDhtxRNcAPQN9
TE3OYGp8msP7D7F39z7Om1sREXuTjOJSihoaqWruoLKigfjrCVgcMsFwtRbWWsYEugdyK/EO
EddCMDxyhPV/fIOVL7/MxrffZu+WrezevksBqX2ahziho4+NhS1el13xtLPDXoCq8UFxLAf2
cWiXBtu3b2XTrp1o6ulh4uKCkzin2a1ttI5P3Je9kCs+e3opvxGPj5l4ODlpTbh7DLUFLfR3
jzM0MqmIoo7M9lBZf4ebSWJfnuL4jDXQPr6DQ0cOc1TvHOYOYXhH5JJaXEfH0LBKFHVmhHs9
jTRX5pIQEYj9hbNsE8dwQs8Q/+Ao8svqaO0cVIRN5b/JkUFRpbuCizppa64iOjYGG3sPbJ38
FaBq65m6D1TKyr7JxVRF95NTq4FKbWpT298nUG3cuJ6f/+KnPPX0Y3zms/MxVN/4xjeUGCqp
lv6yGAxkUHpCQoKSTuPjmgzeXgpUMoZKTvlJD9XA3R5xE7/HXE81c6nXGLI6Qu1b/5e8b3+B
kmc+Q+u3n6Dm2S9S9eyjVHz9i5Q9/yhlX3+csucESD37AsVff5ZC8X6ugKjiZx6h7FtPUvgv
j5H90gtUnXyb3rALzI21KwHPVXWNJKVnERkdhae7By7iSTrQ65oAqpI/C1QPpp2RrzK+rKI0
j9BAO3y8LLC/4sRFX18uXvHhvK09xqeMlDgqfUNzDh435fCJs1jbuhMbHk1yRDju1pYc2b2N
5QKqNmxbwyHtI+ifMePk6fPomphjbe9MQOB1MYiX0NPeSEV+BlfdL2FhYszJoyfYvnEXby1f
x7ajx7l8LZiCmhpKKsq5cSMULz8nLDxt0Xez45CbM4cvX8bY8RLWDhe5cN5IAPM+Vu/awfKt
W9m/Vwz0B7QxMjTBzvEyV8PCuSE6S1p+HtmiZKSk4mxrx67161n+h1dY856ExK1s37+Drbu3
sHbNCtatklOGq9i8ZRtHBTQ4eweSWVxD171pRVB0UUl9Zl4uYayfssxb+Dlc4NRuAZJr1nNc
gMe+TRpsXLGBFW+uZvk7qziodZTg4GAaGmuoa67B57oveueM0bM6h3tMGLmN9QyNjzM9PsLc
eA+9TQXEXHcT8KCNnr4hFnauJKcXU1BSq3hIr1/zx9PDBSvri+gY23Dc8AKmZhbYWVnjckmc
P2sbDET9jx05LmDWnrDoOG5l5VBQVUNNY7sCVMlRd3A8Zcv5vYa4GNkSERRNRlo2SWJbezMz
cRwa7BOAqLlhI8f3anJM6wjHjupwUveU2Jc57pc9CL8aRIS3D/6O9lw+a8IFI130jgqQ27tb
8VDJaTgLT288YwUwNrbRPDx+H6hmZpnt7aUyKZFgW0cc9K0JcQ0lNzmf8qIKJb5tcKSdxrZ8
wmJFf7Hej9aRd9m05VVx3tazd/9RtI6Zc/5iDEGxVdzOqxPQO8DYxLgS21eel8rt2Ov4uTly
3syYw0eOKYB8MyWbhs4BBoYnF1dsysUE0/eaGeqpUa6F6yFhXLB1xdrRj8TUcnqHlgSlL+R9
XBTFUMOU2tSmtr9/oHrp5d/wg3/+Lt/+zgssMzAwUDxSu3btYs2aNaxatUqZ8pNAJQUIP6kp
v4VVftJDJYHqzp07DAqgmqOPucEq5kpvMnfVkt4DKyj773+k7N+fpuEnz1D148dV5T+eFOVp
av7tWWp+9A1qfvhdKv/tu+T+4Emyvv8lcn70VQp/8R3yX/tXCrb/hgYbTQYS3ZibaBc3/j4a
m+tIy8kg6kYk7p4u2NvbccXDk6Kioj8LVA8LVpeB7E1ioL8Z7U1MtA/Rt2K5k59PblkpefmF
SiLmTAFwTq5XOWV6kSPapzExscBf7DP2erCy3Nz1sj2Wlqc5Y2rAKWNDDE6bYmh6QVkleMX3
OjduJlFfV8XYvW5l5V662Ef4tUA83DwxOW2O5kEddM9ZECHasm1wkLaeLrJzbxN9Ixj/6ADc
Yq5zWZxHt1u3CU/PUGKFkhOj8Pa+jJH5eY4ZGqF/whDjE0aYnTmPo7Mb12PjyCgpoaa1hY6e
btqamokNCcVI9BHNbVvR1zmOk7MD7v4CSr2cMT9/hvNnjJRpv9Mmptg4XCYkNonS+g56J96v
RzQ7O70IVNWinqEelzA+sB/tHbvRP3SMY5oCKjQ02bVTE819BxXNsrgbUQKoqmlprSX6ZiR2
Lo5c8r5CjOhPdT29DI+PKarwc7NisO+t4VbCdaVN9Q0NOGtui7ObH9fDYomJiSMqKkKZyg4J
lbFeoXiIEn4tkoyk2+TcSeO6fyDmpudF/z+Jrt4p5XyYmlvh4ulDSHgc8XG3uRmayFUBDFdt
vJRg8Nz0QupqGqkpLiMtNpY436tctb2I3Sljzp3UR19bFwN9Y3GOzbGxdcDfO4DEiBhSwyOJ
D/THy8ka+wsmnNI/zsHDWgK+j2NsaYO7qFeUgJjyll46h6YUBJmbByoG+2nMyyAxMABPy0sE
uwYQdz2am+ERpCTfoLIqS/SDWJzdTdkrrqcVa17kzeUvsX7LBrbtOYLGPiO0T7lz0TUO/5Ak
svJLaWxsprQglxthou94OOHp5MAlAXx+QSHE3M6gqr2fQSmWqizslOdRQOxYF0NdlTRUZir7
9bsaoHioHFyDSUoro/vurAqolAnCySVANTWvQ6U2talNbX+/QCVz+enqaSthMCd1j7Ps4MGD
ipjn9u3bFaCSRQKVzOX3SazyWxpDJYPSL1y4gJ2dHUlJSXT3CdiZk/nAWpnrKGUuO45ZLxt6
DPbSorWSjoPLaTv0pqocfIt2rXfo2r+KHs219OzbqJRGjbep3flH6g+8R+PJzTSaadLiZKio
pc+UJjM33Mn0UBe1dRXczkgRg30Ejh7OWDnIgdKZwuKCPwtUSwU9l8op9PZ0UFmaSUVZJtUN
VXT29zIyNszoyD0mh4eZmpgmLauMQDEIO7n64u11lcToSHJFPQqLiygtL6O0KFtAQDRBYnD1
9gnA92oEoZFJpKQXUFFZq+xDDl7T4310tFVRW1NOTm4+YZE38bwaQmhMAsW19QxNzzA4OUZj
SyWFpenklmaRU11GSm0jac3tVPX10zUySEdXPXl5KUoAubdfEMFeQQRdCSTQ/5oyxZVeXEx9
dzd3JycUlevJ0THqS8uICQoiwM2NG1Hhot5F1LTVUt5YIcD4JrcT4rgRFyPgJ15ZNl9U3UTH
4BQjSwQeZxaD0lVTft21ReQmRePndAln64t4uXri4uiKg/1lXOTKOE8PosW5qq4qZXCwi+Hh
XtEexSTeSSI1K5fqlk76xibEAD/O5PQgs6IfjU50irplci3EBw8PN66K4wsNieF2cjo52QWU
lpZTV9tEaUkNaXdKyEgppq64mqH2bu519lIs2zU4FHd3T+wuXuKMgNVzFgJuPHxUvxOfRn5K
EZkJ2eQk5lJXVEe7AJ7hoTHB7HcZbm1jtLGFVgHUqWHiPF7xwdfDW6lH8LVwoqJvkC0gqa6o
jNaiEupysrgVJ85hqKivpxMOl+y45OpBYFgMKdmllNV00Nk7rgSAzyzIR8i+OTFMb3MVFdmp
3AwOIeJqENe9fAgQxxwR7EduZiLZmfEEBLpiel4Pbf0jHD5xlJPGJhietRIw7cgFx6u4X40l
Oj6L4rJ62lu7qKuoIOtWIsmi3VNvJZCRlSkeEKopbeqiR8CxzGowOj2pCNIy2sFAcxHVBYnc
vnGNa4G+ikc1ODSemMQ8Smt6GJleEPacmZ/mG70PVOrUM2pTm9r+zoHq1CkDjhzVYs9eDXbt
3s6yz3zmM0oM1fPPP49MQ/Piiy9y6NAhZZXfJ+GhkjuXsglZWVn4+fkpXgcLCwuioqKoa2ng
3tyEuFGPqXLM9fcxV1fPbF4W45kJjOUKqCuIZqgwSnkdzo9lIieeqewEZrISmM2Kh/RIZjMi
mM6NZqoononSO0xVFTDX1ixY7R4zAuj6xUCXn1tAeMwNPAODuXD5MucdrXHxcye/5M8DlZz6
fDA5svz/8L0BZiak/pAYPEYHmZZCjlLNWyadnVIlNr4rBsPa1gEqBGQ0NbXQ39XGQH+3gIFx
RUdJ6nAN97TSIT5rqm8T8CkAtKlfgOgIY+PT88rbY4oQ6OzskJL0uO/eoKL8Xt3UQ0+31K4a
XwSXsZlBBgZbFQiRKWw6x2ZpFadR+gJHFcHMe4pWVWN9E41VAnxq2miraqGhvoWWzh5lqf7w
UgiS/wRUDbW20l5dTV9nm6JDJRPgjogB8u7dTgZ7OxVNsZ5eUe+hce5OqfY1Mp/25gNANS1A
faCZwZZqWqoqKReAUVfXoABkeXWd6BctAlBrFOCWgdKq4x9jQrRxX2+3aPdxRfhzalaVP292
TsYAqcrQeDd1AvQqBYi1NDXT1dHLYP8IdweGlXaaFGAwNDBJV7Not44xUQ/RvqMS8maYuHuP
tpZ2qqtrKS2rorikguKiCurEuWuubaerScBT7wR3O0foabnLiPju+HyC67nJWaWdlFQx4nfu
1TXSWVkjvtdIc1M7LQJY2iS49d5jbkTsc0gAd6+UnKijvr2C8tpiRbpAHn9LS49o12kmx0Xf
GxVtN7FEgFWRn5hgakwcV3cjDQJu027GEerrTYC7K5H+/hRnZtFUU0dpcQVl5TUUlFaTXVJJ
dlkFuZWVFNVVUd5SS017Mx09w+LBSRz72DTjA0MMdrSL0sa9gX5FQ6xjcJKW4Wn6xL6H5M1k
dIiRex2MdJbRVJxIenwg13yd8LniSkLibarqumjvm2Focmk6nUllVZ8iZqsA1YwKqNRQpTa1
qe3vGKhWrlzBf/38Jzz73Ff48mOPsOzxxx9XEiP/4Ac/UJTSZVC6TI78SQl7SumFjg4ZFJyj
AJWpqalSZDqL0upy6u91U9bdJAZQcXNv7ORuoxhMGjoEBLUoA3/nQB0dd2tEqaO7v47+3gZl
IJHL7kc6G6Cvidneeib76hjpaeBuW4N4q0mM113cax9goLWbxup6biWl4HM1GAc3T87bXsTK
3g7fQD/FU/TngEp+/iBQyTIu053IwNrpMaYmx1XK2DKn3LhM4juj0veWT/UzqliSxdgT8Z3h
WVVqlNmp0fvJiueLFLWcmFiaB29CFWumJMFVpSgZHFflv5PbT03MKiKaqvx+E4rHRtZpbj5+
aXQJ2CgJdJm8n7duPnedktdtSYLiUWa5N7aQjHi+SHqYUOXKk4HPozOji6rgipr6/AA6Oe+Z
krKWdyfmh9DFHHVT8/kEh1XHjcyROPs+YVBV+ppZBZbm5hP+KurqUnJhemZRfVyml1GEMQUk
jgvYnBbtI49/YnpEJYbKfWFQJXn02PT996aW5O2TGqXj04uim1NTM6oVdUv/PZAKZmbygc/l
+6PiSCenVUUC9fQDKYWW/oZUuR+5p5wPWW+ZRHhmvg0/kAJnqWK6InCqSl2EaOGJ4X5KctOJ
uhbIdR9vboSGUSNAamJoUpXEeUw1wbZwTsal11F8f3JOalyNqBYLyDMo2nJaqf/8+eR+fxhd
Uu6NCxAcH2BysJH2mizSb4Vy/aob1wL8FIFTRTV/IScjc/PMdF97SvXujAqmFlb/LaaiUdns
fNqhB8viTW4h2bJ62lBtalPb3xCoduzYxi9/9Z9KUPoXHvksyzQ0NNi6dasy1ff222+zfPly
JTlyTEwMQ0NDH7tCctpQajaVlpYSHR2Ni4uLknrG1dUV/8CrxNy6qZSE+GSSb9wmJTZNlBRu
3UxW4rgS0hOJS40hMjmU8IRrRN0M4WZ8NHeS4km/ncQd8XS+WG7cFCVBlCTxW8mKiGJERBT+
wUG4XPHg4iVHZYWhq9Nl8TTvRYiPPx0trUoDLY2TkrYg4vlnG/yBG/vizX72g4PDwudyCkSJ
KWLuge3nFgea9z+5z8wrk6sCeZVNFn9TVWbnB6/ZOdW2C3WafV8qmPnfmt/f4qA9v79ZJYev
aruFarw/oe1CPWeU/Sj7+pDBcGn6mQePX/FSLZb7R7l4XAtNwP3f/0A7LRbV8c4ulvfniPvg
9gu55ZZAy4cm7H3I9rNzS6ar7p+nxd+Q/WihzH5w//e3U7Wnqi2n5ttzyX5nP7jP+783s3jc
EmQnJ8YY6O+lq61VlHYG+vqZHFc9DMjfef85YX5f8/t8WN0e2nfmz6XsE0wtxkT197TT19vJ
4N1+8QA2JiB3dlHln7m5+/2X9/fL+/ubmtcmU322sM+pB8r7rpcHvqM2talNbX8LoNLTO8mh
w/uV6T4pn7BMBomfPn2aAwcOsHbtWt577z3FQyVhZiF26OOYDN6WYCan/eRKv/DwcCVJstSk
Cgm5RnjUdSIiryuiijGhMcSFxIpyQ/wdS0R4DFE3ogmJCyUoKhD/8KsEhQYqiVpjI+K4GZ1A
ZFgskWK7aBl4HKoq0fPvhQuYCg4P5WpoED7X/bga7Et4WDC3b8RQlJJCVU4OAz3dDA8Pf6Dx
PgpMqU1tn5YLXvZXeb0uzTc5N/f/fjpNXt8yNEB6cZemZvoo+1fB0eSHAtWCt/TDgWpSDVRq
U5va/mZAJYU9jU8bcMpIDytrc5Y9/fTTfP3rX+d73/ueIpvwu9/9TomhkkHpn4RSuow/kjda
+Sq1m5qamqisrFRKXX0VzS1ltDaX0NZUSWd9LV11TXTVtiilo178LUCsvbmB5vo66mvraKxp
oqWmna76AboaB8X7vTQ1dNMsSmu9LJ3i73aaGtuob26ivLaSkrpSUYqpaCimQeyvo6OGwb4m
Roe6GB+79wG9qQcbUm1q+7Rf8B9WPs37f5i3Se2hUpva1Pb3AlRSNkFO+T339Wd48qkvP1zY
U075yaDxvr6+j12hh8Ue3Y9XkvFEMgXFsCrGQt4g5czA9JL4nsWpGRl0pAQeIYOIFmJLZH6z
xTmi2fdPmc0qH0/Px6dMiDIm3hsVt+AhUQcZRD40n/D34TClBiq1fdrtYV6hBY+V/OzvA6im
FqfCWTI9+SBMLU5Bf+B7alOb2tT21wcqmd3i17/5OV955gk++7llLJMK1xKiXnrpJX71q1/x
+9//XvFQySm/BfD5JG+48jfljX5uPsZCBsqOzZdF2b/5FVxT8/EfMiZDCkRPCKgan1Etvh6d
/+6UcgOeVDSOZsTrQpH/V96bUcUdqYK77xf5mbIq70/AlBqo1PZpN3k9LVxTS8vC+39rb9nH
AaoPxOGpgUptalPbpwiopBjz5i3rWbP2PdauW8ky+UFkZKSSX096pqQe1cmTJxUBxE9Ch+rB
p+alq+mWrgqbWFyFdF+7aHLJii9Zpudm768gm191ND03Pe99kqulVEX+vRCwOytXLU3Ne72W
rphaCPx94MavBiq1/b1e8Esh6q/Vf+VUvpwyX4C4/0kM1SJUPSD0+WELG94PYupVfmpTm9r+
tkDl7OyEi+slfP2uEBEZwrIXXnhBme6TGlQ/+clPFj1UEqg+CdmEB2+qH3iKnVJN4c1OqzxS
ytohBZokPAlAQjVFNzt3TykzokyKMjo3LMqo2G5MKWNzI4tF/n9KQpVU5l5YGj8xXyYXlsor
S9oUsFo6PfKwqUm1qe3TfsH/rWKo5LWzUP6SB5IHV8UqvznHQyQT3r/qVS2boDa1qe1vDVRr
1qzixZd+zQ9/9AP+8bvfVMVQff7zn+e5557jRz/6kRKULnP5yaD0hdVvn8RNdyEwfWHVn4zP
6u7sY3JIPOUOzTEmdjUyOsW9sUnuToxyV3wwNDnA0HgvIxM9jIvX8fF+xib6GRXl3sQAAxN3
GZgcpn9qmN7pIVEGlTIwJRPyDilB9dMj4sY7LBpC7GPu3pzq7xFRxsSNWkr5zMwtro56cED4
JFY5qk1tfw2gefDiX/r+3yvQqWQk1F5italNbZ9OoFq7djU/+el/qEQ9P7OMZb/+9a/5xS9+
wc9//nPk32+88Qba2tqKsOcnMeUnvTzS0yVT0NTXy7QneSQnJyu5/PJzi8jPLKUgq0L8XUFe
YRk5hSWkFuRwKzuV+PQkUnIzlBx8mVk5ouSJkk9mZqEoxaRlFZOcXUpyQbkoxSTk5hCfm87t
vCxV3rrUNHIyCyjOLqMwtZiClAJKxfcKUrMpzEynqbaKnu7O9wHUUu/UwnTGgwPEhy1PX5jS
fNgAJ7d/MCfgXyNo+NPSIR88dmlyqf2HeTVk23wagFb23YWYv4W6yX6xsHr1YUHh8lillMBH
8fAu/e7ClN3D+uOD0+YL+/5rQNFHAaWF8/Vg//6wNlp6jAuff7Au4r2Z2T8Z47j0Wl16nuR7
E4oI7f/79lOb2tT2vxOojh07wvoNqxUvlVRMXyan9nx8fBT18j179rB582Z0dXWVKT/5xY9r
0svV3t5OQUEBERERSqzWmTNnlJx+7m5eeHuHcMU7lCs+10QJwNPHF3cfT9x83HD3dsPHz1sU
X3zFZ37ewaJcx98rVCl+XmHKd738wvDwC8b9qh9XAn3xu+aHb9BV8b4vV7z88PYKxMXpCs72
7lxxFft0cyP46hXu3Iqjo711sbGWDggLXrWHgcDSAWJhEFxalnoG/tSg9L9B62rpILZ0UF3Q
TfpbT1n9T4Bnad3/Euj4JGFmaTzi/0uYkmAoYeXB2KwPA5ul2zwISQvX1Psgaj6W8kGQUqmp
T6um9ubBauF7i6KhD+z7YUnMPwyoFqBKbWpTm9r+UqCytbXG7qIVbu6XuXY9gGXSOyVTzvzs
Zz9TvFSvvfaaoK5jClB9Ekrp8iYoldLz8/MJDAxUcvkZGRnh7OxMzM1E0gtrSRUlo7CKrLxC
8nJyKczLpLwgg+qibIoyb1OUkSZKOsXp2ZSm5VKWmktFynxJz6c4JZ2C28kUpCVQkpNEaX4y
hfl3yM5JI7+4iNTcAkJjkpRkwp7e/ri6eeDne4WE+BgaG+sXn2z/lB7VhwWvP8wj9XGe9P//
Zgvts1AehM4/1bafhvZ52ID8UYHqI8UQ/QV95pNsmz+3KGNp0Pmf6ucL5/phDyEP8yYttOFC
yiGWXnMSomamVXkxlbRGKrBafAB5CFA97Jx8WF9a2g/Vpja1qe0vBaotWzbx5luv8Zvf/oJf
/fq/7sdQyXx+//Zv/6YAlY6ODvHx8QwODn7sCkkxzwWV9ICAACUxsvROydQ2DS2tDM/noJ+V
OdqGB5nrbmGupYK5xhLmmoqZaysXpVKUalFqmWutF5+L0lyrKu3NzDWIz2oLxf/F9j1i+7s1
zI22Mjd9V8l7dndinMKaBqJuZ+AfFouzh7eS+ibkejBVVVXKU/jCFMVHGcQ++pTFn/dm/G/q
lB8GJA8b5D4t7bN09drSqaIHQfFh0PhRBuylfe7BtvlrePA+zJv0YcD0sJV8S499IVZyYRv5
94O/tegZWpq/UTTVlIComanpec/UfJmdEh+Mq3Izzr0fwmSZnFJN7S0otS+t09Ipv4d5HtXZ
ENSmNrV9HKCSOlQyhkrRoJIxVDIQ/Z//+Z/5/ve/zw9/+ENefPFFRT5Bxjl9EiYTI9fV1ZGV
lbUIVFZWVkqMVldXB5MySe5UH3P9DcxVpDN3w4cpz/OM2+owbnGIuYs6YK/DpKMuE5d0lVdZ
Zhx0mLEXr5fOMGxjyJDNSSbdTJgNvMBsrDNzeZECvARkjfYwdK+fotp6YtPzCIpKxMnVFwe7
y/h6+lBWUqoErz8szufPwdTSaQw5cCzc2Bee6j/KFMT/Jph6GEQtpC1ZaK9Pm4fqw7xpC1OW
C7E7D37+UaeUlsLJQh9aAJcF0P9rAdXDvFOyPrIefy7FzNyHTL89GIO2NLZqlvtgtOhxYmHK
b1qRU5idGGHs3l0lEblKT26O8YkpRiamFRBjflqyv79fidOUNzv5/4X6fRg4qWVR1KY2tX1c
oNq5c4fioZLxUz/92Y9ZJnPreXp6KjFUmpqaSqJkqUMlldK7uro+MaCSHqrg4GBsbW2VBMWJ
iYn0dLeJCg4wN1bPXF0qM+HO9J7aRf2qX1H+q3+i/P88R8mPv0aheM39yfNk/fR5Mn8mX58j
+6dfE0W8/7Nvk/YfL5ApPi965V+oWP2fVO1/g24HAV7JQczda2FmuI/61lYyisuJu52O39Vg
PC+5EuTlS2lhkXLTf3BQeZgX5UHPlBxkFv6WsWLKysXubuXGLm/w0sO3sJ3cx4NB2P8bphw+
bNCVbSLbSMbXyT4i2016Mx8WBP5prP9SOPhT074f9fflccu2kN5c2Y/k/yXoPyw275MGqgVw
XPi//HvBs1xcXKykiZJ/9/b2Kn1aloW+Lvv0Ql9/EKqWXksSzuQxyTACeUOS3+ntG2B4fEoR
670/7TerTPVNjgwycreXqdEhBrrb6eloZWhwgMGhYTp7B+i5O8zEjOo7ct+yjjk5ORQVFdEq
rvUFz9ifi2tUm9rUpra/FKhMTIyxsDzLZWcHvLzdWSbV0X/5y18qK/ykd+rtt99WYqik2Ocn
AVTy5lZRUcHt27eV4HdLS0vs7OwUD1VbWx1zsx3M9Rcyk3aNPitt6t79b0r+6RlKHvsMVf+w
jIZHv0Dtl79E2ROPU/TUkxQ8/ST5T8vXxyl+6svUfuVRyr+8jMonl1H7rUeo/NfHqXjpnxjQ
2cJclBtzg43MjXSIwaqenKI84pMTuOrtiaedNYGulynNz1/0UC21pSvMHrZqTwKUHGAaGhoo
Ly8nMzNTmSaNjo5WpjPl37du3VKK/DspKYnCwkJlEFoAhv8tq/wWPDlL20+2gxwEU1JSlBWf
ssg2LCsrUwBrYbrm01B/ef7l+ZYDt4SCpRIbsp7yvQUPiewTEhoW4Pmj/L5cTSuPW14Tsv/I
dpArYheAZWFV4YIX75Ocrnpw5ar07sjjKC0tVa5ZmcRcxlPKRSUyD6cEK9nf5fmSD13ys5CQ
EKWPy8+XeoYWgEbeR+T35UOUvDbkMcrvhoVHEhZ9gzsZOdQ3tzE6ptKOGx8epLOlgfqKIurK
C0kT12xMRCixMVHExN4gMvYmt9OzqahtpLOrh5KSEmJjY5UYzdDQUOVmJx/iJPQtVY3/sDgr
talNbWr7S4DqwAFNtm3fxMpVyxVP1bLPfOYzPPLII3z1q19Vpv6ksOeJEycUEJA38Y9r8iYt
b6i5ubkEBQUpMHXp0iXl5trZVs/kvUYmG1IZjrhMq84OKn/7I8q/9ijNX/wcA198lIEvPUXP
o1+l9fHnaHjyeerni/y76cmv0fPs12h7/It0funzdDzxOSqfWEbRPz1Kx/ZXmfO7wNxQgwCq
Tjpa68gpzCYx6QaBvlfwu2RPmLcXJQX3gWrp0/rCyqYH1d0XBgnZqG2tjVwLcMPT3ZZzF85y
wsAALQGjR44dRvfkcU4b6mFgcApdvVOYmFng4x9EcWkJwyN3USRMZ8ZVr8h2nlF0d5R4kiWC
hqpchqiUoRfVoVXbSm3SCUVVXn5Pvjc1rzo9dV8scT59jzKBMv/bi+rT8gFf2XbyofVYzKW2
RFxRVRfmhRjv51xTaQYtSQkyo6rv9OSMgJFRBodGmZxSGpHJ6SllMUBmViq+Pp54XPHEwdMH
J99rXIu+SW5hEX29nYqnYuk+phfU7ecL7xN+RKWOv3AsswvHpDp300vywilTRYs5IlX1XLrN
xJJjklNQYwKkOkV966vKlSTdEnSGRscYm5oU8NRNT2cTNTVVFJSUUlhaQV19I/19PUyN31Ml
U5obV86NSsNW7n++uqJuU2PDNDbUKZBhbWPHOUtrvPwCSEvPpKqmmnGxHzndJbebmRhleko1
5abEHHH/HC2kZmExhQsPTTQ8/YBQpgp+ppmcGFMShQ/e7aWutlJ5ALjqH4iVnQM+AcECerKp
rK1THo4SE+Jwc7LHzFAfXS0djuw+zlnjCyTevK1AzKzs13NjYg8jtDSUc1tccxcvOnBE+yR7
NA+xT/MAmvv2oLl7Fwf3aWF53oa4G0nUN7Vzd3iMnt5+KivKyE67TYCXM5YmuhzX2sWhA3s4
cFALzSM6nLZ0xDMwkvg7mYREROPm4Y69vR0uzk4EBwWQGJ9AumjDKdHY0pMl04DK9nrf1KJa
40ptalPbxwAqmRz5x//nR3zu8/MxVP/4j//ID37wA/793/9dWem3VCn9kxD2lE/u8slVxlDJ
p10ZkC6hSuYK7O9qY26sm9mqdGai3Rkw2kfpL79PzpMqz1T340/S8fiztDzxArVPf4uqZ1Sl
5ivfouGpb1H7lW9S/vwLZH/5y1T9wxNi26/R+NSjFH77CWo2vsTgFTPmeqqYHuqira2FvKJi
khLj8ffy4oqjKyFiAC8uLFmMW1nqkXiYLtXSbaS3IicjnmBPHc6f2cje47vZeOgga8QgoaGp
gaHOfkx0D3P0sDZrN+5hrcYRzC95kpGXJepSRW9rBV2NRfS2FFNZnMrtOwnEyif4W5kkphWT
V9JCY/MAPW0DzI5MMtLTTUN5ERXFuRSJkixgJDYjlbT6akp622kf7aV/tIuhu60MdNbTJAb/
opw8UlPzSbhTKLavJjmvjpSCGqra+xkYF1A4MihgYpDhvhpa63KoLk0nPz+dlKwMknJKuF1U
T0mLAMfBGdX0ihicRvvu0l7TQFW+qGNOIZnlVWRX1VJZX0tHexMj3a2Md7UyJACko6qK8txS
Um8LkE3OIiO/nIKKatEGOcTFRxAa6oO9nSn6pkbsPuvITgtPDlk64+hzlYzkOPHdFHJyCymt
7aCmc5zGrknu3ZuZByEVEI1NijpNSUiT51AAzGQ3k/319NTn01CSQWbKLW4l3+FOXpGoZyPl
Lb0MjKmAYmJgnEkBRw1F+eTn5pFZXEpMVh6RmTmklpRTVlND5p07JIVew/+iDY4mp3CysiQk
LJRbckVqZTGlBTeoKUmgrLKIrJIy0vLLKC6r5m5XixIbODFYS2d7EUW1+aSW5SlaaQnpaWSL
Nq4uyaOjvoKy/Ezl2jA4bYb2KTMuewWQnJFHWVU17c1N9LY10F5XTmVBJnmZqcr0eWpOEYkZ
hdzILCCvton2/rv0DPRT31BNYUGO2CaT7HxxzKV1pJc2kVfXR23vFD0j4oYgjn9qekm8kgKi
Ewx2N5OXnkB0RCBB1wLxCb6O57UIAm7cVrTeOgQUd3S1i36fRFK4F94W57E6YM6+N45zaIsJ
of5JdLRJXTfRrybqGe/MoLs6GRc7EzT3H2LnQQFURwwxNLXAysIMvf270d+xG90dB7A970js
zSzSihrILm+mqLKe0tJikuOucyvShyBvG0yMDrN5xxZW79DkwCkHzrpE4BWehG9oNAHXrhMZ
FUpM+HWuuF7Gw9mduNhEympVC1+G5lNVKamrpmfuJ11Xx6WrTW1q+wuBSkNjO7/7/X/zve9/
h29/5wWWSfkCa2trDAwM2L17N1u2bEFPT09x4UvPzcc16Z2S7veMjAxl0JD7cnR0VKYMhgd6
xI23F2oz4YYnQ2f3Uf7fPyD7K8uoeuxztDz2mOKZqn/yG1RKeHrmm1SI1+qnvyneU70WffNb
ZD/9DLVfepaex78p4OtxSr79FPVbfs+QnzlzQy0wPkRbeyc5BcXciIvBw8UVW6tLeLj6UlT0
0YDqQUVqCYrZqVG4W23gjMHraOlrss/ECM1TBuic1sXq7HFsTU9wQjxNr1i1i5ff1eDwaUvi
0xJpbimhuiiZlBgfvJ1OY2ehwykjHU7on+KEeNI3snDDyT2SsPAU8jJKqCuuJD/5FoEel3G0
O4+F5Rn0zxpz3NwUqxB/gnLukNdSTnVbGWUlqaTEhxF8RfyGtR3a2qfZd9iEfdqWaJ26iKG1
B0HxaQIsumjv7aShOoOSrDCSIt3x87DEwsKYk6dFsbiEqet1XMLSuJFdS1PHCP09w5Rl5xPk
6oHtaVNMjc5wwsyCU/aiLf19SYqPoSz9FpWpieRGRZAQGMxVVx/MTKzYrXkCjQPa6J4xw9LB
DitbM86YHsfQQJM9x7V4/dhZfrn/LC9pnGD7UV3OnjqG6ckD2F28hMOVEK7G5JFR2sHAwJQK
pgRIjQ9NqxKQzKkSZE9LVf3uchoKb3DrujM+9qac0jmCtq4B+hZ2mLsH4BV5m8LaXiZkCiIB
FdXpGUR6uWNnY4uZ7UWOX7DlsCjG9k5ccLiEp5Mj5ieOsvuNV3n7P/8vq/74GkePH8PMyRVH
b1cir1uJtrPnZmIEN1LSxPnNJyu3hCYBWEMthdQWxnDzhjvWbpYcOW/MLn1d9ujoiOtND1vz
M8Rc8yFY/I6cCj9yQo+TJpYCYqJJFwBTWdtASUEu6YkxhPu6ctnaDDNjA+X6PKJ3moMGZuhb
OXEpMJR4cX1JWL95IwoP98ucP38WfWNTDuiZcfiMA6bOIfjfKFDasL5tBKk5qkq7JKefJ5gd
66OhIpfYUG+uuNnh5+9NeHwC+Q0dFHcNUjc4qeTPlDk1RwW0j7QUUJUQR4jJVYzXWaGrYUeY
fyodzZ0w0cVsfzb9VSEUxLtgY3KILTt2sW7nUbRNLhKVmEpRbjqRV5yxO3gc/Y170dHU54KN
N65B4qEiU5zDzkFVUP5YD2PdFdQWxRMS7IKukT5rdx1k/aFzaJl5YXUlnOsJKRQLUG9sqhVA
mIy740XsLG24FhxJTkk93eNzdM+ooGpcDVRqU5vaPiGgcnS0x9bugqJFJeOolskg9I0bN7J6
9Wreeecd3nvvPUU2Qbr8PwmlahlT0tjYqHioZIyDjY3NIlANDnaJW3oXY43JDN90oMNsC/kv
fpOM55ZR89Tn6XjqCVqf+CpNTzxHzdPPC6j6hoCob1D31DdoevybytRfzQvPU/b0k7R/6Rn6
v/wsjV96hKIXHqN2w7yHqr8JhvuV2I/M3DwioyNwcr6MhdVFLrteofAjANXDYi9knEnG7XAc
zq7FUPtV9p7YxW4xSG47Jp/Ed3F0/zoOaaxm/25NNmw+wLpdJzC2diZRwEZZeSYx1z04p7eP
3RtfY9vG19m8eTWbtu9kw86DbNunxzE9KywveBBxLY6UuCTC/HwwP6XHUa097N2/k10HxXd1
tTnhaMPlWDGgFqSQlH6Dq75OmJ8+wbG9YptNW1m/XoM3Vmjw6srd/HHdfjbu1+OCix9JWQUU
lReSlxZGaowrIZ7nsTxzGI2dm/jjqjW8ukmTFVomaBg5ctE/gdK6XoYGJ8i/k47tqVPo7NqF
/tFjHDcxw9jBkSuBASQnxpGXLOobFkSggKaLRqe5cNocy/P2nLO8xDnryzi4eeId4Iuzmz2m
ZjqcOX2Uo0YnWWlgzYsHz/PmAUN0zlpyycaM8waHOalriOYJE07Z+HAjvUqAwP0k10yqvCzy
1E2O3WWkv56OmjQy4zzxtNLB6NA2dm3ewDrRDit3HmCtlh6aRrZ4haVQ3zLGlPitjKgYHMxM
0Dqgiaa2DgdMz2Pg6IyN91WcvXyICArA1lCXba/9njd+8h9sWrFcgOBZnK4G4hXiR4jPGSJ8
TPAPcMEvOBj/kBgiIuO4HRtCxs1A4sMviwvPFJ1zYt9nDDlkLgDUzpFLLu4E+nkTGeRDgJcr
FyzN0dY7hZH5RbwFUMWn5pCSkU1ocAAOlqboHtrNoV2b2Ll1I2vWrue99VtZvXM/mw5po2Nu
jrOfF1ev++HqaoeRgPO9+0Rf2rqDHQf12K1jLsDLD7eQdBKzGiiv6aevd5LZKRnHJ2Oz7jEy
2E5VSQZBvpextjjNFW937ojrpW10hi7R1u3j80AyM8Hc1ABzo820Z6URfeEaZlvFA9mei+JY
MhSP6txkPxOd2TTn+nPr2gWsTA6zces23tm4E0PRD4qqGwR41RLt684FrWMcXbmDPRv2o6Mr
+qCTP2FJWbT2DM6v9hvmXkcFpXk3Rbv6cPaCBRpH9BQPlYVHLN6RKWSV1zM4Kq7h2QkBhaV4
OTthIc6jp8dVbmUW0TgwStvYFHcXEq9L9fVFL6d60FCb2tT2lwHV4cMH2b1nB5u3rFcU0xUd
qi984Qs8//zzig7VK6+8osgmyADZT8JDJQNu5eolmXJGxlBJD9XFixdVq/x6WkQFuxhuTKQ3
1oa60+vIePHrpDy/jKqvfY72Z5+g4QkBR08+RflXnqJMlmeeoPLpJ5T3qp56iuKvPUrxU4/Q
9OXHaXnsCcof/RzZ336Myk2/o9v9DHOdNUz1d9Jc36Ckr4mOjcLlihs2zi54BgaRX/zngWrp
iqWFbSRQpd2JxNdJi/On14pBX5NNhw/x1qb1/GH5K7z96k/5w29+xPbNW9DWOYO1SxDXb4qb
f0EO6ek3cbIxZcea13n5lz/gj7//KWvWvMNWjd1s2KHF6i2H2LbrJEeOmWBr4YC/hxfudnbo
HTnAnp2b0di9ld2HNNEy1kPL8gznr7rhHu6HjZMF+/dt4r03XuStl3/LW79/lXXrdvD2Sg3e
WruPtzdrsXbPCfTFoO0ReJ2g61dJDHclwssMtwvHOH1yD9t3bOLl5e/xf95Yz4+X7+YX645w
6Jwnd/Lr6e25R9qNeEzFcers2IqNqYn4nWB8Y+IEAKSQl5VOVkIM15ztMTmoxbZ3V6B/RFfx
FFTXdlLf1kdxda3SBjE3wnD3vMhZU230zIzYbHKRN3Ss2Wlqj68AkvyMRAEj/gpQrdl2gA37
DHAPuElrcx8zYpCfHUOV+FrxMswq8Tpj/XVU50QR4W2OtcFeTu7dyKrlb/KHN97hl2+u5qdv
rON3azUxtPYmI6+FgZ5Jov0CMD5ykI0b1rFXAKKZAJ2A5FTSKmooqKiirqyEKG8PTu3ewb5V
Kzije5LrIWEk5RWSkp9OlP85glxOYmt1CmOz0xianOWM9MKdPomV8SEumGphaLSPE+cNMPf1
JOB2GsmlNZTVNtPc2ERFYTZpSXF4uLtidOYsJpbi3ASEEx6XTHh0HEb6J9mxcSXvvf4im1a+
xTbRv1avWce7azezfvcBVu3ey06dY+ifPcUZcyP09Q+hpaXBrt3bRR/ay+6jp9hzwlzs/wr2
PglEJVVQWNYjgGpaaTuVvMMw0+N9tDeWEhHshcW5U3h4upBZWEzn2CyD0iMrVyLOe6hkW8/N
9tCamUqYhQ8mW89huM+a6GsZ9HXcY27iHmMdhdRnXVP6lpmhJms3bmDV1l1ccPairq2T7o5G
4gJ9uXDkJDqb9nN87wnMz1/Cxfs60bcyqWtqZfjeAG21Jdy+cQ0vDxvs7M9iIOD3yKmzXPSK
IrW0h8rOMdqGJhmWgfsTIzTVVhLkfQVLU0scHdyIu5VFTeddmmUc33x83CJQTS3E4qlNbWpT
2/8cqFauXKHEUH3xS59XxVA9+uijPP3003zrW99SkiPLlX4yhkoClXS5f1yTU2PNzc1K3If0
UEmgkrIJMuj9bl+7qKAYIFvTGb/jQZ/9QUrf+w8y/+URip//DOVPf4bqrz1CxbOPUPL8P1D4
jc+KsoySF5ZR/rx8/SwpX11G6lc/Q+lXH6PmG89Q9r1nKPnNP9N8YgODIQ7M9TUxe7ePtoYm
UYdcYuKicRZP3zYezlwJvaYoqf8poFoISn+wYeVxyRiqAA897Cz3YHD+FMfPnmWvznF2HtjO
vp3vsn39q+zdqYGugQCqy754hcQQkxBHRFSguOEbsOk9AVS/+FfeevUXYkBfzZ79B9h1UIft
mrocOGrCKWMbnOxcCb0aSICbG2YGOmhp7mLbjs1s0NjCJq09bNE9iv4lK+z9nDlrfZq9u8XA
9fbvee+Pr7DqnXdYs3ozy1drsGbHUbbs12fviTOcEwONT0gE1677E+JpgfPZvZw6sIqDu1Yp
QPXmhq38bPk2fvD6dn68Qot9Z9xIzK6mo72fW5GRGO/fi862DVwUIBSTfFuBi9LqaiWYuSg9
mcDLdhzdtoU3f/0bNLftxUUMoumZpWQWVHA7PYuklFtExYbg43dZAJUORhamaFm7o2HugbFb
EMl5JbQ3V1Gac4dz5y8oXjvp4XP2jqShrpOJoQlmJ+Y9DJPzgfAM099SxK0wZxwExBgd3MRJ
zc2sW7mcP77zHr9+ey3/9/U1/GqFBsdML5OYVkt7yzDRom1PHzvMju1b0TltgntYFOk19TTd
G6F7aJixgT6yYqOx0D6K1oY1nNY5gX9AEDGpGdxMTSDc15QAx+NYnT3BKSM9DAyNMDIUcKN7
mNPau9A9thlNrQ3s1N7PyYs2XA6PISw1T8BYKYVFZVQU55OaGIvz5UucNDDC8KwVnkFhxCal
kpCcgqmxIXtEW6958w9sXbNcAPqGRaDasGsfWw8d5KCRDibWpljYmmJqKgBFRwutg/vYc+AQ
W/YeZeNeXTSOWWBk5Y9XcCqpWQ10dUyr2k8J0JbeqiE6W6uICfXH8vxpXFwuk5yZTWlLJx3j
or+j8u5Mi7aeGuvlbksJSf6euOhacPDdA+xecwxn22ByUksFBDXQU5NPY34cuQl+OFjqsUVD
AODO3ZyxvkhUQhKJNyPxcbyI2cGT6Gkc45yBBb4Cpq6H3yQiNl554JLB7OFB3pib6XHgwDb2
au1mpwD1vdr6OFwJI7usg+7ROYZmVJA0MT5MQ3U5gV6eWJyxwN5OBVR1HXdpvTeqeNjeB1TT
aqBSm9rU9pcD1Y4d23jp5d8o8VNfe/Zplsm4JicnJ06dOoWGhgbr1q1TVvlJoJJaQR/X2tra
FDVyuTzez89PEfWUU37y//eGxG16bpi5gRrm6pKZS3RnwHQHVat+StGvvk3WD5+h9rf/TNWL
36fsd9+h5JVviPIcZa88S8XvnqX8d8+T8vOvkfaLb1L663+l4fWf07b+d3Sf2MyonwVzebHM
iZv/3NgInc3tZGfmEBkZjoPLJc46WuN81fN/DFRLBQvLS7LxvKSLvfUR7N0d8QmPwD8ylKAI
P8JDXQj2tcNYX0DQwWNs3n2I/Sf0sHG044qXK9Znz6C1cyu7Nr/Lzm2r2Ke5k8PHtTmufwb9
M7ZcdPQlMCCGpPhUSvKKSE+Ix83RBgNdAWy7tglIWsEfVglYEACkde4UDr7OuPk6YWttgtHJ
gxw7sJv9u3axZ/cBduw+yt4jxhwytMDA/CJuMuYmLYPUtFu42xpyWmsVW5f/gtVv/Zq1697j
3c0a/HbdPn783l5e3KLHMStfknNraW3pIu3GDS4a6WJ+9ADOF86SV1ZBRVs7/cNDyiqxnuY6
ksOvcU5Hh63vrmTbWlE/zSPoGZ7ljIUtTm6eXA0KxMvXHduL50R/OI3NZUesguKwjUwn6HYB
Va2dDPV10FhVhJu7FydPW3DS1IHwm1n0943c90xJ/aJh+f8xZka6KcuNx91OnyM73mb7ipfZ
tup1NgtQfW/tRt7ctJtXNuzlzW1HMLDyIv52BdUVndyJuYnTBQtMTc7g6uPHzdx8qvsGVdND
8tyLa6D4zh3sjQ3Q2rieI/v2YGVjjevVALwDvfF20OWKzRGcbI1xdLBRFPg9PdzwdrbFw/Es
NudPcOzELtbt3cLq/fvYoXcKHQs77Ny8BZhdI/12EnGiz8iVrwbGZzC1tCMgPI607HzyC4oI
8PfD2tyMk4f2ckT0kf17dirX6Y49+9l7TBttMxMsXe0IjAwgNjGcsDBf8VsXBNidZJ/WQd5d
v4O31+9j9U5djhk54eQp+lRyBW2to/eBam5amTJtrC0hOiQAe1tLXNycibiZQEJWAcVNncq0
mVzI0NLWSm7mLaIDXTE9vAftDdt5+2ev8drPV3BojxFO9r4kRCfSUJjDQF0R3dXZXPNz5ICo
/6otm9m4S0CRpib7douHji2b2LlyM1qbNXGycSE1JYf0jByCrgUrU6DHD+1nx+a1vPn6y/z6
pV/yytuvs3zjRjbvPcAZc0eCwpIorG6lrX9EWcUnV0BWlxXjcfky5iYWuLte5U56Ea19w3SO
jjGizBLLgPzZ9y1sUJva1Ka2vwSoLCzOY25hho28Z7peYpm2tjZaWlpKMPry5cuVcvz4ceUJ
8ZOIoVoISpcV8PX1xdzcXPFSSWDr6OpUphAmxGA4d1emlMlmNt6Dfmc9us9r0aC/nT7ro3Tb
HqTdfg9tjjtou7SFdsfNdDmIYr+NJvPtNJtp0Gm2l7vWxxhzN2Em8jKzBdHi94qYG+lnfGiI
puom0pLTuR78/7H35nF1JFeer6Z73DPzGc9M2909bbfbr9uv3R73TLtcXtptV9muKrv2UpWq
tKB935BALAIEkhAgCYEQ+yp2kASIVewIAQKxCbQAEiAk9n3fl7tl5v3dFxGZeRekUrld1e+P
+eTRJz4gbt7MyIjIPN8458SJLISEBcM7yAcRiVFoedz8UqCiYtx3DKatQujxg31PUVGSjIK8
OJRXk5d7Vw+BgV4MjHVhcqINY4PNKMnPIgAZBTfPC+SaIUjJTEPJzQLkZ2XhelICrsaFEiXk
g8CgiwgICUVwVCJik7ORW1iF+vrH6GjrYjD47FEzirIzEB8TwTrwuJszDjvZ44iHKy7EhiK9
OJso1AIUFWUiOz0JiTHhCAnwR3AQOT4gEoGRyQiOT0X01SwUVtbgYcdTPG5vQnZyCCLO2+Ok
7VY4H9uJE66OOH7mLA65X8Lu0yGwuRCPiIxK3G8fwNDgGB433EXJ9asovhqPivxcDExMYXhx
CUtaNXO5LE2OoKOxnqWkCPO5CG+PcwQCPQlQncfFwHAkp6bjRkE+MnPSkHwlBtnZV5FVlI/8
h09xu2sKD/qnMDK3APXyHCZH+lBaUYXkjAJczS5FQ0sXFuZV4NUCOOr205L+otYGui2Jdg7d
T+pxIy0cF8/YwNl6C+wObIPd0cM4YudIYPICHC+EwD0oHqkFtWh7NoOxoUUWZF+clYEs0h/V
9x6gbXCEWTMWiNKlbiQ6dnpbH6Ew5QoifM4jlDxASUlJSLmRh/TcdOSmBKEw1R95mfEoyM9G
KQFOupK0tqIIteV5KLqRTOAkEKd8PXDMywN2Zy/A3T8EUQnXkHOjAM337qKpsY6ter2edQOZ
+QSmHjzGs95B9PYN4G59LcpLCpBB2js2PBDB/hfZSln/kAj4R15GVOpVZN8qwN1HDXja9RjN
j+pRUnIDsXFR8PUPwL4jjthncwp2J/1xKZLcJ4HWB839RpefDFR6TsXimu6ScZyTkYaUtFSk
ZuYgjdSnrKEFrf3jDKiGR0fYysmynBRE+3rikosz7Lbug+1uR1z0ikT85Rzcyr+D0Y5uGJZm
Md7dghoCepfJGPXwPQfnM6dg42gPZ0dbeJ92x/kTXgg8G4yy4gpMjE2zCVj1nQrERobipLMD
DpFJB4tP2LsD++2PwcnTE+cDgxGflIbcgnLUP+xA85NedJJnr6vzKVuVmRxL2yoOxQW3SXv0
YE6lxwIniBY29lybB6UrQKWIIor8cUDl4eEOt5PORG8eh6ubkxhDRfNQfec738Err7yCd955
hwHVV7XKj1q5xsfHWR4qaqGiGdlpoVnT254+Yyb4uZUl8MsTMCwQqOquhb7lJgyt5TA8LmM/
hSel0D0tgLYzB7rOTHDPMqHvyILhSQ4M7XnQN2WAq0+DcDeTgZTw7A40Q01YmehhqRnGRyfQ
3tKB2yWVyExJR2hwCC4F+CIuOfYLgWp1kkLzlX/jY4PgteOYniQANTuDJfKiXuHU0OgXyeez
RNFPQ7UwxWJlnvX0Y2hqBlMLM2zp+fjQGGZJuyxODWGgr5WlQqAWiQePOtDS1oPOHnLM+CJm
pxZBp98rc3PofdaOjieP0E7Kveb7qGm6h8bONrSPEoibHsbo9CAB2D5MjfViuK8LnU/a0djw
EHUNzXjQ2oWWZ4No7R7C6PwiaJYglWaJ1KEbA08b0dFUiSctBDRam9D4qBW3m5+h7FEfqttH
0TWlo9mUQOgXKzNTmBnsx+LYCIMNqqSWSLupeB3LZSSsLGJlagLjvT3obWtHf2cvHre04/6D
R2hq7WCuwWc93UQxD2B+YYIo9jGMkONHdQZMk3NNk2uomKKn+ay0LC9Rz/A0ng5MYmpOIy71
1xuMP6Elx9G93rhFaNWTmJ/pxtjAI/Q+aWRpBprv0/QBzWh61oeHXcO4/2yY9APdG05cKWhQ
azDW18NSeyxqNGyJ/ZIUvKzmpKxNahWWCUgMPX2CXilreO/oOLoGekj/9pI26cTMVB/GxodY
UtLpySkxy/fyJCZHO9HV04IHT5pwt7UZ1S0tqGt5TMZ+F0t6O9TXjRkyHujEgwJUD4Hn6YUV
trXK4hL5SS1/ywtYmB5Hf1cHWh+3sASxdMVq9b2HeEQmK91jQ5hZmsOKepG0KQHS0X487aTj
qB33yHiqb3qGxtY+POmbxeC4ChMzGvJsi22o1XLGrV5oVvKh3i7cI4CXR6A3/koKTp7zRVjc
VZRWN2JsbpFlN6f5uEbIuOtorMLT+mrUFBSivvwuOloG8fjhEBlLA1BNLJF+0bMFIRrybE9M
D+FpXweLn7tVWYbK27dYWo/Bp0N40tRFYG6C7edJoZzm9Rog529takATAc76Brp6shbFtbWo
aGzEXfKctLY9Jc9CN3tOauofIjMrB5npGQRg85CVmkEAtwgP77Wjs3OUZWKnY4qXtrlRgEoR
RRT5KoBqyxYr/PxfXsX/+PP/iq/92X8QgeprX/sa/uZv/sYIVDQonWYepl/8skJzWdF4I5pd
mWZUpsvDfX19GVxV1daho3cYHX2D6Ol9huGeVjKjbcJkz0NMdj/CRHcbpoa7MT7SjZGxZxgZ
78DEaDvL4TQ32In5wQ4sjrZgYfQeFgcbMDdwF5O9DRjqvoduMjN+1vUEff2DBFY6UHWrFlnX
biApMhGxEdGIuxyBhPhookj72H2+aMPjL8ykTJW+YZn8VJmScpK/6Q0qMRcPLXoNSxxpSrJI
E2cKxiXbei2BSe08VEQZLq0sY2FZiyWVAJWWKjtyvFYPQcND0GpYYkdORxNkqqDmifIXdFCT
c9GiZdfVsSSSLJmklNRydnYeMwukD5bUZKbOE+jTMwXDGQOMddLx8jbVOnYvGikIWS3Bhd6Y
1FNK3Ckl9tRKn/PmiT0FqRAFSetO70FLoFDN6Rmk0ISYWo7exwprQ5rwcpnm9pKux7G4HjFB
qXmyTR4GC1eNxUotch6Qewd1IRuke2Ftz7H70ZrdCzsPLwUl82KdmfVRXlYvX4/WgyZTZfci
FSkJqJgokz5kKmkMiO1mTMjK6k+vv0KAfBk6gUAZt0ygTUUgcYllU6dbqcjtySyhZklXebnN
aR9JGwTzmhWoVsTv0j6dnFvCMk/ajhfbVcvRjOoaVujv9G9y22nNEpbyZslQDfJ2L/TeyHjS
67SYJoBL4b6k7DZCLifgakYubtfdR/fACJYI5NFjDFrSxmoyaVDTraOWoFdT9ygZUyvk3HQl
Ji0qWncxLQPtGy0IIOpInVULWF4ihdSf9YPswmVJMHRS34n9R93IywSy5sk1Z8hzOUfKEt1f
UKWGbkVL4HEK9+63IIsAVWJ8ArLT0lFfWY+u9j6MDMyRtjdPZgsxWascP6XEUCmiiCJfAqho
HqrXXv8F/vwbX8d/+JM1WEPzT9GtZg4cOMBSJ6xfv55ZqKjr4quwUNHAdrrSj1oAaCA63Tcw
PDwcV65cQWFRKUpu1aC4tIolEr1Zks/cFYVF2cgvLMCNwhIUVt5BftUd5N2pQmFVFYpvV6Gs
/A4qS++i8tYd8v08FJVnoLA8DYVl6Sgoy0FeWT7ybpUgr7QMxWWVbBl7VmouUhMycT0hnSX0
vHkjFxU3izA5MWbcy88cqORYqZcLhSMNAxlzyLJQ7DRjtyBmLddLGc1pMWX85ihVgRc04ma0
BDy05EUv6MW3P0+0tkBn+kQ5CryOLXNnS92J8tOQc2slmOJkoDJmChezpdM+pFt6qHQEvHgx
W7S8Ia1gVDKCCawohNBNaVdl4V4NU/LnRiUtZ//WC6ZM6ZQ9aL1J/el90NgVTuClomP3TNuQ
lwBObQYycsZvfhUEmHIHSdpRypjOsyzkFMB0rE9M2d85IwDJdYW8wksnA5WcKR3PZ0qn903v
hR4n9aMMX+IxHCu8EajNYIW2NoNurQhcEPuZQjGFI1rkfpJFhqrngAd6ti0LHZvUokr7dEmt
Y3BMCx0zNFknz+tZ4aTyXKZ0g2VGdXZ+ek/UdWoQUZBalQcGh9H0uB0l5VW4U/8Aj550Y4jA
ixGoBDqu1eS2yKSBowlVebCU/RpSCFgZyE+DVk4eKrYBT6Cd41XQEBhTqUhZVptSYLAs5pw0
ITABlYHXskB4FfmYxkDRn1pabwqAnAAdAbmhwXEWH1l9uxIPGx5gsGsQi9MExpZFq6qcRV5v
kO5ZASpFFFHkK3T5uZxwZD/X+Pn5wd3dHdbW1tiwYQPby4/GVNG9/L4KCxW19FBQoOeSE3zS
+Claqm7fQU1ZPWpv1aG6tBy3S4txi0BVUXEecglM5RSUEliqZYkAiyoIdJVVkWOqUF1ci/qC
RtQU3kVefjGyyfHZpTdwoywPeRWlKCQv1qLbdSitqEdF1V3crqjB7ZvVuF1cg+pbjXhQ/RBt
95vQ8egRVpaWLTbjpe49873aXib0BS0qcc60JQtV4Eyp69hPozLWQwIETrRSyVu5sEzVvPTz
RVtjmG35YtxWRLRy8ez6pjoYrymBhAgTgvGcgvH8YmUFc8iQrQPMqqOzUPImmNJJ1pTVMCUr
aUhb3ggWW9TIAGRSbGLbiWXVNjdm55LB5UVb3xi3nJG21uGkLXi0UnvAYNqCR4Y2o9VHdvfp
JFiSt2oxgyLeHKjkbX/0JqB60bYu3CrrkjiG5P4VoYJmJDcWA/dCoFq9NYx4Dr1xjMjjRN5S
iLWP3tQe8piRzyVbZ3izLYrEm+fEMUahg4dxzNHza7QCZmYXMUzjmsZnMDG9gLl5umGzBryO
g+nqKgmABLFdjZY/qZ1hkO5fyyy5dPJA80WxPfY4vdHaqJfqxWDYIIE9g3vx2dCZWdkECTDF
dBmkriqOufVHBgYxOzHD4utkUGOwppfHt7Qlk6AAlSKKKPLlgcrb+xw8vU7D66w7vC94YQ1N
mUDdfT/84Q/xi1/8Ah9++CHc3NxY4s2vagNWGVLozJdu2UJzONFYk9HhMcyPzrEyPTqKidEB
DI/0o3+ExpKMoGtoFP1jMxgcm8LQ2DjLZzU5PI7ZgUks9M1htn8BPV2jeNo/hGfD/egcHUT3
2AT6xucwPL6MUVKmJucxNTGLyTFa5jE9soLZcRWWJhawMj0nzcwNFqv4zAHrpbBogFGJiy9q
2dphggX28uZkxS2Cj9YgWLp0DM8nDn15MZEKb4QpzkxRmoBKVGa89B1e+h7PimCmpETk+Ryg
YpCkMwMqmLn6zPbSswAwGTBNStocBsQPTUpf/4J91SytNSaoXA1UMuBpJAOJVoI1UYma9j40
WtEEI0+IVjSze5XB6rkH67lHQaybdjVYytAo189gub2LBUwxIBEs2vrzHujnNvU1Ly/Yo844
QXgOYLnPBypzkDeY6k+tpdT6xZGv0ELDDS22rWGgyFvEJcl7LT53nEEekwajdcwAQbLyyRZG
8/0YxeMFBlViEQwSRurF1XqCRg/VwgrUiyr2uxGmzN2JesFkuVWAShFFFPkKgGrr1s3411/+
DN/69l/iL/7yf5iC0ilU0f383nrrLWahys/PZ1nOv4oKMZW1aoNh0RpkevnTlyRPXrg6Bhy8
WSyL7Moxd6NppDgd6g4jr0nq8oAYS8RewXTGK03JqaKQtIVooZFf+LxZcLNFnZ7PO/UyoFJL
Spy9qHnO6BYyAtOqWB0RqDhjPMfnKc4vUqgyWJkUpFhW/99kHRF/wgy6BPBGy4oIDZwFNJlA
x8x6JW2gLFuo9F+wwayxrngxFJhijsw2VoZgEU+kN4cpyepm8Xe9aK3TGoEKFu2rN1pnRBAy
Wqi4z8+Ubf73z9O5q92iMLMgynWnOY8YoAvmgMCZIPcPmIy8FLBW/TOClcU4Ep4vBs7o8qM3
KNBnRTCd42X/ZErTG014ErRDb3ymAHOLqEGyNJlDvgxU4obW8nOhlS2+kMcCZxy3glRM16Od
LbBVn7yaY4s3jHF1pH9pTJfRUmY2thWgUkQRRb4qoPrZz3+Mr/+3/ywm9pTjpmi6hA8++MCY
NuGrypQuV4ZaqOS8TjK4UEUjv3B5mgvHDKh0BtOqHLAZLp3droi72LPf9aaVXkz56tk5BFnR
cmJhwbyCmgAXJ1oSJGVgnMXi5SDzRUAlBm7LQKWTwMnkirGM1RFn4FpSOIPohqLxRBTgjPsE
UmWn55+3lK1SlCZLFWdRngMscue0sBwDevF3gYARLTx1vRheDDSr3XCmIGsRCmT32Isgwxyy
zOu62hJnAVRGhaezuP5z9VsNVIIYTA0pjkwrgdVqoOKk+ChjHBZnypRtdFcaoU14Dqj0Zi5L
E3CZAp5N9dNZBNOrqJ4nRaArBnkp9kiyzgkvsu6tsljJm3KT4cMsRfKeknL5PMuVafyaLHWr
7wsmG5IISIKZxVAwQRb0L4YqXpCfUTO3JngjlAlmbmbJMSsV3lRHvRi7R58LDfm+Ruo/4wIH
1mY0H94KOZdaKlr2jLCUGWyYv2ChgmQ+Nn22Cqg4BagUUUSRLwdUdOsZuivFtu1WsNq8Hmti
YmIQHBzM4qjo5sh0Xz8apJ6bm8vSHXxVQEXhwLzQuCq2+SnM4yzE2avRisCZvfjMLEqy2jE6
TNgu8hwDMkFW2mxmCgZgICBGIYbCzwoN4iUvWkFFXvEq0d3xUtfKS0RenSYClc4CqJjaMA9+
5rAKqDgxQF1SlKvBQ4Qq7jn3jqXFR1ZSOjOgMrl2ZGuUQY5LYUVr4Xoxueg4ixVn8qo4tdEl
aB5jpTGCzWoAMHfhMQPG58QAmQMVpOB8g6CRLDmrgEoGVmOQuWCEOQNPA5dVTCnrpXaVYVUG
odWuOb3eZDmUY7BM7SDFSr0gUPz5WDEYXY5i22nEYGpppSS9lmwxhSC7ncQ24NmYfd5laljV
ps+791YdZ2GB5I2uVNM4MYGUWCQXoV4G1VWgJMVjUZjiOcNzbjzz4wSze5DjpMTCSwsepAUG
RosXL676I1c2tbkYhC4ClcACzzXGPhdMbSpZp02LQATj/Viu+Fz17jDGc+mMqz4VoFJEEUW+
CqAKCLgE34vnWaHJPdd861vfwt/93d+xbWd+/vOf491332UWKppokK4m+rIiW19eCCzGGBs5
wFV0m+m1grj8esnMNcOZZzY2WYBMq9U45jKE7E7QS+dlQKWWLF+iAhBgOhevEy1BL6rjF8WQ
iS4/g5nLT17RJ9XPTHGbAxVnBlSmOBvDc/ABs2Dp5yw/Zi4wMRBeBA0TUAmSy48zi1/Rmv1f
dpsIL3S3aVelEGAKDpzF6jnDHwBUssvp+VghU+C0EUgEk4VKdqfxz11buk9ZIQsmoKLwyMvt
ugqozAPHjYHpgmX81h8FVBYrIDVGt6h5gLuwyj2HLwFUz42TzwHq585nDlT6lwCVfC29yQUo
W4JpEDkFLXMLFGeEJs64UhSSS5uzsFBJzyNb/cmzOCzmWjdaqETrojzmxD6Xx7dWskyrpeB2
3mShlidbdFjo9MwQy2sl65TuRS4/s6B0wfD5/lxFFFFEAaovAKrDhw/inXffwj/+4Hts+xkW
Q0XLX/zFX+AHP/gB28vv2LFjKC4uZvlu/t0rrIfFCjbzF7/B3DVnBlOyMtDDckm0HIhsfl5z
RcMbLIOZv+zs1Dw2x3x1m/kKK9MMWg6+FSxWuH15MY+Nedlnn1de7GpaHcP0PBgJX9UIeCFI
4HOgbPV1jWkaYLkYYHU/WULp6vL8eHxRX7+sv8zrb1w1+AUB95/32R/f/8K/oc3/LeXF37UE
5+cXATy3YlH/fPvK7WVa8WlaPGDZrqZJA55bgYrnLHCWlrWXgCUUoFJEEUX+OKCystqI//XD
fxDjp2ihFqn33nsP77//PiuffvopXF1dcfv2beaWU0QRRRRRRBFFFFGAyhKoXF1dsHffTnz4
0bv4zW9/hTV5eXlITk6Gj48Pjh49il27duHUqVMKUCmiiCKKKKKIIgpQfQ5QeXqeQUDgRaSk
JuNmaSHW/OhHP2JbzvzkJz/Bz372M5Y2wc7Ojq3y+ypiqBRRRBFFFFFEEUX+bwMqN7cT2GT1
GX7y0x/hH77/d6YYqm9/+9t49dVXmdvP2dmZbT1Dk3AqoogiiiiiiCKKKEBlCVTvvfcOvv+P
f4//+LU14l5+1EIlW6koUL3xxhvMQlVRUfGVZUpXRBFFFFFEEUUU+b8JqGxsjmDDxnX41Wv/
gh+98k9Y09zczNx7UVFRcHBwwM6dO+Hi4sI2K6abBiuiiCKKKKKIIoooQGUJVEFBAYiJjcSN
3EzU1lVhDd1uhsZP/fKXv2QpE+jmyBSoaB4qmnhTEUUUUUQRRRRRRAEqS6BycnLEjp1b8Pu3
38Av/vWnYgzV1772Nfz1X/81S+75+9//niX2rKysNO6/p4giiiiiiCKKKKIAlQmoNm/exFx9
NIaK5aH65je/yTZGpkk9qaWKAhWNoaKJPZWgdEUUUUQRRRRRRAGq54Fq27YteOPN11lg+nf/
n29jDc1BFRERAS8vL1hbWxtjqIqKijA7O6u0qCKKKKKIIoooogDVKqCKjAxHSGgAwiOCkZgU
izU0M/onn3yCDz/8kO3j9/HHHzOgoi4/usedIooooogiiiiiiAJUz6/y27V7GzZu+hTrN3wi
xlD96Z/+KXP7meehKisrw/LystKiiiiiiCKKKKKIAlSrgGrjxvUsqed//fp/EmOo/vEf/xH/
9E//xPJQ/fznPzfGUClpExRRRBFFFFFEEQWoXgxUu3btYHv4/e13v4Vv/sV/xxpvb2+4ubnh
0KFDWL9+PXP/OTo6KlvPKKKIIooooogiClB9DlBdvOgDD89TOO3uivPenlhDN0OmZfv27bCy
ssKWLVsYYP2hW88YIIhFD8sCmnJBLHqDWIzfsTjWIBVYHEv+BD05Cy3ifwzsaqLQa+rEIpDv
8gb2U/zcYPyeXMjHpAikcOQ0nPh9QfyO5fXN7sfingyrCozHW9bN7Biz87M6GesgFr3ZbekN
q9pU/3wxF/k7vMFgLHLdTeeT6wGxQHjhOYxtDMMLrytf26K+Zm27Wlbf1+r7e/78pjazOI95
HxpgHEsg/WcAZ9Y/prY3L8/XX7AoprEJNj7Y36Rzm8YhpLEDi3aF2ZjUm31X/L7YzrzZec3H
kkX92N85s76xbFNTuxjM2tZUtxeL8DnF9MQa6w95/JjG/urjV48/83aihX6Xk8a2ebu+7Lkx
L3rjM/n88ZbPhOWztPqdoogiiijy/zdQnTrlBidne9ges8Zh6/1Y8yd/8if4+te/ju9+97ts
Cxrq8pMtVCqV6othSq8RC09+5yHBDRjswKDBimYOgkFLCk/VFHQarXisoBePlQv9Dj3GwDHw
0ZGK0yIYzECFXlEgQMIvk2PnyP8WYVCRv6pJ4cTPIQGGhpxTpTNAS35fIdddNqyQ31fIZyvk
EE68Jv2uhhStgelD6HnxM7no9eJ1LepJXuhaeq8cu54RnuR/8vFaqV68+Hcd0R4acn8qcl76
k5fujV+ljMQ2FcT2kNuTHiSYYJGX2obdGynL5DOdVg09pyKf6dln7B/9ro7WQwdevSweoxfb
iNZnWdCxYxmQGQyr7lUv9hFpA0HgiOrUG6+rJufW6sX60wHG6wRRSRtom3Ogdk25/zhWden8
rH2k88r9z0nFHD7pPVJ1bRCvIyKHOJ4MBhUprAbSucTv8uRcHCm8IMKCUQFzPLlnno0/nTS2
6HgEuQteUEvtqGfjjp2XFa10PGlbcnWtcUyZ+pwn40bPi23AkeM5/ZJUN3J+Uns1bQvWx9KY
4khd1XrjGGX/SPsb9OR6vIqciz0A4pgQ2FA0jS2pzwQD7QMtKwIjElJ3HU9uUc+eLZFSeHZ/
7N64JWks0zroLcYrHXgC+blMvrJCxyNP2pfTQC9o6VPK7oFuPWUwe/Zg0U70GVxhbUfHoIa1
F2lXUug5xLFjMPUxLwEVHVec9K4APZ+aFVY/8/EnP++k3SBYgpbAxpbYn5DvS/oHcl3alnRB
jfmimi8CfUUUUUSRfytQ7du3h207Q919//m//Ees+au/+iv87d/+rTEP1VtvvQVbW1sUFhZi
bm7uC4CKKhiiRASVCBhskm4QgYkpQBV5+VGIIcqLvAA5gRQtebnTQmBNP7dsBA+9hrwAOTVT
BpxBRxQSeVGTs6wQINDoxJc/U5ocUe7cAnlxjpPrzsCwYhALZ4IpnZnlhiplghkEqBaJgluU
Xt68CBrLElBx5lAkKUD6kyoULdU4RF0tC2JdjS93UblCK8ITeDO4koFKJ55fT/6mNtA66Ijy
oUDFGSHD8uVuDlRS0ZupCyOEmYBqmd4fvSZRhhR1qJJZodWS68DqwYv1ZYrV1E5qQm1qpgzJ
ec3rLkMOLwIVVXacBBg6s/aVgYopf+m8K6R/Fjnaf8ASGRMa8qGO3A9PChhEkTpw0hggbcva
SGcJVHK/aS2uJSvyFbFAawHlFKR0gvhTb2595EVQ5Vn9RSXMzkWhQa9l40xFxyY7t0o6v5qB
EIWFOTImNez+ybijACSBJ8+JdkyxHzTkSSBjkowvAzknvddFCXZ10Ih1pX2gpYBA7k1ua45O
Lgj0cMsMGuS+1QoSpOrMrK/sM1onFanPingveohwJj/0BoMRqmSLmY48m7ygYcBE+0kvmc7Y
xEAv9r2GfV9vGvsSqLBzCzLQE5jTU1heIe1AJjPcBLmnadZGs2QczZP71JDxTYGVPqMCZwZH
9Hc2kdIyiIROBd3yMpaX5ki7LkuTHL1p/JkBlZZMBgSN2Hby3wU2dnWk37SfC1TixEsBKkUU
UeTfD6g++WQtfvqzV/A///qb+G///b9gzcGDB7F3717m8qMxVJs2bWIuP7o58hdtPWMEKgZV
nJmFygRUMKglC5WevcBMs1byklxWGxWG+AIVlTcMJmuIRnLucbK1ir5AmYViFnrdHPuehryw
5wm4zBEFtCQpCeZuYRYnqkW00PEENsgLnc26eQmkVGYwtWoWbLI46UVY0agkiJKLTvxcbVgF
WmaWHulvvKS0qHVKyxQ6/5xbUHZxGIxuLdp+OgmCeKldROsNhR9eggfBaO0gSkm/zKwEC+T4
JV6y7LFrSO0gARWDIKIEtXodlshnKwQAqJWDgRFnaY0TQU7PrGicBCOsfuQ6ovIVLSqydUWQ
rFL0nlVEiRutUwYzC95qC5XxWjL8gPU3ZwbGgvGatO81IpjxejPrieHF15L+CRbnMgHqMrl/
ZoXSk3GqVzHLlYFZsnhmxdNKEKankwO9ygi1tPdlGBEtqZJ1C2Ibq6TC67Xis6HRi+NEsrgZ
x5ae9JugtqijYFhl7TQDKp1BzfqYZ9Yis3uFCaoE875glkVYtgv0xuNfBFR03HGSRVkem/S5
oUClo+1A4NEgTJOywJ5HlV6yWpoBsHF80/5VkzZQk2fVMC+VZdbey6Q957kZMl9ZFJ9VM/e9
+FxA3K1B0Fu60BnE8uxZMgKVwURHemZVFV6604MCVIooosiXBSpv73NwdXNiLj/rIwewJigo
CDQwnbr5aFLPjRs3sk2S8/PzMTMz8wWXI+DE3DAayaIC6cVnAiqqrpjVicxMaUVmxiawMDKG
laEBzPX1YbxvEEMDoxjsH0JfTz96uwfQ20P+NjyBkclZzKq0mCOz1BWdqGgpGOh0i5ga60Zn
52P0Tc6ja1qF3gUNRslMdp7NXsnLn0AetWSJSo4zujmM1he56F8c92RUxgxCJBcHUSSLc/3o
62pBT2crJkZGAbXZeSQlqDdzYQkyGEpuEV52wQirwMUijowqdB0rWj2Z+QsiDOp4otCoi0dL
FAZR0HrqQmKuJFI3NVFw2gmMLQ7i8Vgvnk3NYV5LLXqk3TgtO4+OnI8NDBq7QpQ8hUxqXNNI
ACRbX8xdTQaD7OqhdddIFpwF8NpxLM0NYXxyBB1d3RgaG2XKWzBaSkTrm2G10l8dW8OblCek
eBo9izMzufxEC5eW9Sl1ZQm8hrldmeuVQTgv1VEvAbel1cIcuCzcjxSKiPKlVjTRpcgZwZNn
EMlLLrZFTE51YWCgHWMTZKxOLKB7So8JAvAznEFyCcqWTb0FqNC66qanoekdg6pvDrNTPGaW
yBhVi25mYWkS3MI4ZqbmMTgyi5GJRSyqOVNfyGNScvlRmBKLBF70lglwUHMV7WsdOSe1cMmT
EHOIFNtGrqcIxCrmhuaZtY5akPTUmkUKhW0tgU2suj4dAzoCU/zyAHSzg1iamcMkaY+pWTVW
eLEtWHuY96+KwJR6lNzvCFTLfegbbUPHcBd6Z8bRNz2EiaUptgDGeK9mIG8sq9yfMuyK9/SC
WD7Sr7Qooogiivx7AZWv7wV4ep3GGY+T8PE9hzXf+MY32D5+3/ve91gMFXX5HT9+HFVVVX/A
5ajy17BiGcQtGGOo1LoF5nag7sPW5hbczM5DZmwcMiJCkRYeiNiwYIQEBcPPNwDe5/3heyEE
YSFxSE7MQFpGHuruNeHhk3b0jQxhbmEaM9NjeNLahNzs6wgh303IyUbWnWrUdfaha3YRE+TF
TC0OgmzNoD+ht1ROq9wKz8VvmH3GkZk0DBTMprC0+AR1VRmIjjyH2OgAFBTkYWxsAbPzRJHp
VsUhmcX2UFcURUs1OZeaV7FYJupGxDJvYSEzD17nqAWJlGWi3NSClsXvUJepnsWq6SWvDvl9
YQbcSCeWn9Wj++FN5NxKRVB6HBJLSlHd2ol5jQ4qTs1cJFrZQgWTNYKXXFu8GWzIwEF/qjme
KVKxPSlUToFX9WKyvw4t9wqRcj0RYXHRSM+/gae93VhaWWTuJToeBPZTCi2nSp+ci/mpzGPO
jK4+gVlG9KxwUmyZgR1OgYoCj95osTOLp6ExUoKWARc9hlpWqCWFWSioFXSV9cYcpuR7hLni
NnOJCsxNPY/RkVbcKb+OrPTLuJ6dhuScYiTebEJh0xieTeqYZZQBDo070opuWhbfRm5pamQE
D2+VoyD8KnKjsnCz6B5q7vXgYcsAGcedGOhoQtejBtRW30VeQSWKyuvR+rRXXBBC6s+vkPZX
kTvTcNByZCyQ0a0iUEvdtToW2G4wTmQguTt5M5jSQYZSsEkNz4kTDV43Q843y9xm1HIKvc7o
FoZZjJ9OIzA3IbNEkgstamYxNNqOzuYKPKoqRn1pFe6UNuBufRs6+2cxtWzAIi/GMIquV/IM
6iZhWHyKmcF6VFamITwuCH5xcUjIK0FLby/6CaSurKhNzx19fxgts1IxTthEUJKfDwbx0D+/
+MFgeCFofd5CD0UUUUSRfytQWVltxOu//ld87//9Lr717b8UE3vSQmOpaD6qN954AzY2NsjN
zcXk5ORLLyZaEjSsyCtujCv8DCJQqbTz5MWtwuz0DJobHyI7+SouX7gAf2c7eNnuh+vRfdi/
azvWfbIRH67dgm07bHDCzRdhYYm4ciUDhTfLUNtwFz29TzExMYC+7naU3SzApUsBsLY9hvMh
fkjITkXF/fto7HiK+ketaHjciqcDvZgisLGi1bAZu7BqtaBJycozYAlSdKILT6AgRI5d4amF
bZEcM4bpqQfISL2IYzYb4WC3F6HhQahpeozHfWOYXFwRFZywygJmYekxue8sLWKwCMjmXhhD
ZLCEIeYiIUpocQza7gcYqctBZU44vAJOYNuJw3AI9EdS0S3McRxRvpwUDM+ZwYPoQhMXAOgt
4s54szitJQ3HrDVgcDoHaAegniYQcD8dRRmBOOHugAMOtrgQEoD6Bw0EemeZ9UuEKMHk3lvl
SjVasfRSMcgrvmSoEoyuKrGBOKnw4t/k1XKSu4oeT4FGMOgtXX+SFUeMrRGDvY1Bzuz7nEXg
Nszi1Ni1CFB1PalGWqIvfM/Zw/3sadif9YddSBb8su+jeViLGZ3BzGIkFrk9e9ufIDMyFp67
7HFmrxsC/a4i+Xo1bhQ3oqysjsFUe0MlivNuIjr2OhKu5aLuwWMC6XNSzBEsgsLF/uJMrrXP
+We+4lEwmIOjKRZNYEHlHIvHYvcP3mjtM1q2eMug+LmVKXR0NqLu1nUUp8QiJyEdmYkFKCmq
QWvHEKZVkFzuUttiHoalbswP1OLR3SzEx/nB1sUBR90vwjc2C/c7yTM9NgkVdQvK7kgyidBD
DHCH3D/ymJdi+kRrmd4YnydDlfmL74uASoEqRRRR5MsAFU3sSWOo/vwbX8ef/ac/wZqPPvqI
5Z6iW9CsW7eOxVC5urqytAmLi4tfCFQcs3zoxJgls7QGMlBRCw+1GGio6250CoOtT/C4ohw3
48ORcM4Vvi42OLJrGz74cB3e+XgbDtp5IiLhBu7UPSIv7gF0dvVhcKAP0yM9GOttR9v9WhTn
30BkzFVcCAjDtdRoVN2+gQcPatn+g34B4XDzuITgmFTklDeie3IFI0s85llguBjxtUx0xpIg
Gok4OdaKKi8Cfga1GnqNDmpOT2baAhZI/VcMC+ReJzA23oDUK944cnAtrA9vgk/QeWTX16Cy
qxuDiwvMdcSsRstEAcxTw5ZBLORiBpWONIlOWr5lcj+ZlprDuIJPUm2syKvn2BJ9Uh+9Tg1B
swhOPUuuMwph6DFmHhbjaXEM8hI8Yeu2B+/u24D9Xh6IyS/GFLkfauUSgUoM+NfqVqDRLkHD
LWJJt0jucxlLvJYtAlCbuatooe3EM0W8Qq4/BmG5A+qxGnTWxSA7yR02zvux6dAenPL1Qt39
u8xCZVR+Oi1rT4NaQ76nBreiFS0eZvFCckQaL1lATFAluv8MxgBrLYM66gbVkW+o6SpOTgzg
1mg5rKg0WFpWYVmjFS1axhWiEFfQkWOI1oZA+5fUSxCkODjmwlxmcVl0HNDzqcihNLheo6Of
LaLn8W1cCTuNMy77YOdkj20OZ2B1JhHHYytR2T6DwXlBhF/aRxpT3Bztv77WDmSGxMDdikwU
thzHeY94RCaVIbvoAe7UNGOspw1D7Q9QdasWCYl5BLZu4l5rJ1aoG5etNOVFIKWoQX7XkH+0
Pxc4HRZ1PLtnGutosSKPLt5Q8VAvaphrmC4EoQHaMnDykutZK0E2Wy1HXX4c6SOdCmqtCvNk
IrJAntn5eQ3UKr0Y9E/adXZ5HN0999F0Jwd3clNxK6ccRbm1qK5uQu/QmGg5Y7F2ahYvpV3q
Qk/rTdTeTEB+RhQiwwJx2vMSLgRlISX/MVq6pzEyvczOL7pqyfjUzmFFQyZD3JxkGaVgSQqp
F41lFMhPagWl9aFuSfqTFg56kxVyFVC9LCWIIoooosgfA1Rubidw6PA+bN6ygW0/s4au5rt6
9Sp8fHzY5shbt26Fk5MTSkpK/iCg0jKg4oyByJZApZOsMnqTe4fG/CzNY7D+Fm7GBSLK3R7H
9+zA++9/infW78Mxr1BkljdhcFpjCs4lL3fVSC+671WhpjAb+Tk3kFZEZvm361BbVcgU3rOH
lbgWG4mdm/fijTc3YtsBT5wPz0Fj7wI6plQY1aoxRwBvjgDSFFGU42oeExowgKDAZ6DxVtoZ
8sKehl49hyVy/AxRqkOqRQJL4xif70JnZxWuJp4nQPUhDh74FO4XTyHzQR1uD/ZiSLPELD0s
RcH4AouXWemew8TjYUy2D2Oqm8zeB4cwMzGO2bkFMpPXYEajY4qYk4KweYPBIvcWc+PQFY5E
KWqXNVhZmMf8zDiz1I2MPMPE4GN0199AS34kqpM9kRBoiz3HNuC3Wz/EPvczSCooxcjMHGaX
ZjDPz2OOKKipxSkMTwyhf6yPlbHZUYzOk3Muz2NGSxQoue6SQSwrBhGwZKAS1AMQ5lugG6tA
T10EcpNP4rDDbny8ZxucvE7idkMV5uaniDInwLcwB+3UJCa6OjH27BkGnz5D37Me9PcMY3h4
GuPTK5haENiiA40U0MyZQRWk4GgDAykVUZjzpE+mMLMyjrGFCTI+ZjAwMY3BsUn0DQ0TJd9H
4LsHXX2kLybGMLO0gGWdRrReUNcfgTksEZhaXmFQRRUyCzLXEzDVTxHomidgtoxF0n8zKxpM
E1CZXyTjQTuN9sYCxPg5wNVmOw4escbHB07g9/YR2ONfjKSbbWhoH8Hg1CIGRicxOjSL+VkO
c0t60k9L6Gt+hhthifDe4Qz3Xadw7kwCQmNvIrukBfebOzHT34Hxzkeor3qApCsluJJZjsbW
bsyvEJgQlsAtz0JL2nJxdoZZjAfGhtA1PIAn/QNo6yV9OEr6b3KC1HWBgM8yWz2nnp1jcYrT
/YMYIbA/2tOLUTL2xsjYm5ibwyRpgynS19MEohfJFGOZW4J6mYz52UlMTY5iaJy058gwOgdH
0PSoE0+f9qN/aJxdZ2iiBz29D8jzVoLmO8VorGvFndoO3GvqwOD4KIMgDT+F+aV+zEx3YKC7
HiV5sYgMOo2wAC+EBATC/1IsEhKqUF41hGcDKjYORAii5sMlAuVjmF0cJn04htHpQYxO9GNs
kNxHXwdGep9iqLeTTbIGhgYZUMlQ9ccAlQJViiiiyB8LVH5+vmxz5KTkONzIzcSa73znO/j7
v/975u77xS9+gQ8++IABFbX2TE1N/QFAxX0OUHESUOlNMS/UfaAmFDNFIKP5NloLk3DtnBO8
rA9g3frteHe7LRyDkpHf1I0RopDY0n96mvlFzLQ8QM21RFwL8kNsZAwCrxbC/1ou8nJSUFuU
hLKMywg47YTP3v4E//LjD/DO+47YfSwCkRl1KGp8TMCqGZP8IJ5OtqGiqRbRWbeQVvoQ958N
EuVFYIqbgnamHTMDd/GYKIus4mzEZGci5VYFGomipgHd/b2PkHD5LI7bboSjw3aEXw3GjdZG
1BMoaZ8cQUv7Izyqu4va3FKkh17B5XPhiPOLwbXQJKRfTkJS+GVEhYQhPiEJ+RV30NDRjUkt
z1IfyKvFeMEstoimAyD3jhUV5oiCq6uqQGpKMhISo3E5PhJREb5IDHJBkIsVTu/6Nez3vIHN
+z/Cm1s+wnYHJ8Sl5xGlRuBtagwPHjcgLf8a4q7GISQmAr4R/rh0ORDhCRGISSZ1zMlGUU0t
atqfoWVokoCkwKCKAhUFE71+kcWRGVTtEMYr0F8fgax4Jxw4to3020a4+3ujrvkus3z1dbah
qaYStzKvIy85GVlx8bgaReocGokAvxAEhsQgLbsUNfe6QTgTw1NkkKpFsBIkxcrsVgSAwS9B
pZ4gCr0FFXW5uJIdh8grkQiKjcbFiAgERIYg5HIIQsNDEHmZ3EtiLC4nkPPnZ+Hh0zaMEaij
y+6HnvQgPzkdN5LS0HL3AUYI/MwtUvjrJ8O0H7MzXXjYchepN3LIOWORkp2L7t4uzIw8xdPG
YmSQfvd02o+9B63xxqaj+MFn7nh1hx/sfa/hUlQawhNTEB6diMjwZMTGXEdp5UPMEVDouv8E
uSHJuLDNBae3nYSfdwqS0huQXfoIxbfqMPjkHh7XliI34yYCg9PhH5WJ2/fbMLM8QyY0oxgf
6EDNrSJkp6XhemoaouPjcCkyFD5hYfAKCEBIfCzSC3NJ/zZhYJAAZVsTakvycDMtCaWpSciJ
u4z02BgkRkYjMiIGUQmpyCytxr3eCQyT5u0i43Z0dggjg124X1+N7KzriEmIR1A0eVmEXUZ4
VBKBn+tIuZ6N9OwspN+4ipzsWNK3kSjNTsbVzGJcvn6TtHcxmp80QaUdJ2A3gAekzZITSP0I
RJ0/S+6dPJunTrrA0d4ZRw8cxykHPwT7XUNq5h3cqmpCb98A6ec5zMz3obHpFpLTouEX6k36
NhjRcRFISb5MJkyhiAw8h0vnTyOUvAeSkxORlpmBmsa7GJmaYBZiClUsmN78RWgOUMKqogCV
Iooo8kcC1e7dO/HW736Df/j+3+FvvvM/xRiqP/uzP8M3v/lNfP/738ebb77JgtLLy8u/MLEn
y5soBYc+7/KTrQyrk0YSZbkwjunWCrQVJyD/0mlctLXGug278PuddnCMTMWt7nEsyDEpNA5p
ag4TNdUoCQlE2AkneHtegHNIKpzCUpjyzLseTRR3CHycj2Lt67/HT77/W7zx26PYsT8UIYnl
yKmoRsX9fDzuL0dJ7XVEpMTi2NkYuIfmofxhD5khz8GgHcX8UA06H6SjOC8M54PP4pD7KRy9
EITYvHIMTs6wlX0pCYFwO74Ddse2wC/KG8UdD1A70ouq5ntIS0tBYnAYIs764ryTB9wdPGC3
3xEnbF3hZkMUya592LHBCgf3W+NCUCSuFVWg9ukQnkyuYFonQpUYNM2LLg71PFH2S9ARAG27
ewdxEUEE5GxhffQIjru54az3GZx33YtTB9+Fw+ZfwnbXWwSo1uHtrZ9in9MppGSWYGJoDF2P
mnE1JQZ2ztbYtX8nNu/bgfX7t2ObzV4ccrCG7XE7uHh6wCeCQFpGLnKqG9E8NI1pQayTmrrH
KFDR3F9Lj8GPVmCo8TLyr57EsZMH8cn+bTgb4keAqh7LKzNoI2By60Y6EojSCzx9EhfdTsLj
uDMcDtlh57b92Lr9MOxdzuNS2HWU1Y/iQYcaIzM0zYIc7yO749TQ83NYWh5Ec2s5wmLPYY+t
FT7dtQ5bjpC6uzrigONhHHOxxjGHw7CxO4hDNgewy3o3jnueQELmNTyjK0mHJlBfWIUA53Pw
sfdETlI2Wlo6MTI5Ss4/AkHXhd6eBmTmXIWrlyd2H7XDOf8QFrvHLU9isL0WeYmXcO6ENfYf
Pkra1w4/sjqH1w+EwMrGB8dOXMAhAgpb9x7Avn12OO58HmFxmbhT24raghqk+cbAf487vPef
g79PGhLSapFb/hiV9U1obyxDXWEGEgiUuZ6OwgmvGGSW1KBnuAfDI+0ozr0C/7NucLA+BHsb
Wxw5ZoeD9nY4YO+IHUdt4HSenPNyODLzM1FeUYTCzCtIDCTX93BCpKczglztcdbeBjZ798Fq
03as33EIxzyCEFNwFzWd43gyMogGMsHIy0pFZEgA20bBzvk49ts5YI+NIxxdvOBx9hKB4EhE
xhAoiwtGVORZAvKuuBzkiZO+ITgZkogoAnxVDRXo6b6HtodlSE8Mgwe59pGDB3DsmD1cTrjB
1e0U7En9j5J2Or7PFqftz+CCTyzp1+uoJM/36Djph4EHyLgRDXtXa3y2fT027rIifXsEZ88c
x9mTtnC22QHbfVY4Ssbv4UP7cNLjFOJTr6L1WQdWOK0pZQTkNC2fA1S8AlSKKKLIlwOqzZs3
4ZUf/28xfopujvy73/0Ov/3tb/Haa6+xQi1Uzs7ODKjUavUXApVxi41VW2pA2uLFAqgECajU
k5jquI3mwmgU+p2E75HD+GDddryxgwAVUSxlPWOYk4GKQtjYLHqLS5BClPMZQoT2Rx2w92w0
dvsmI+hqFgpKi1B7OxdJ4b44tGETPnjtY+zZ4okL57PQ0DCIru5edHWW4VlnLq5n+hOleRqf
7PLCDsd4ZBDFNjQ1A72KzNI7CnH3ZgiSYk/hsMshvLltOz6ydsOFpDz0jM6hr7cbGUnhcHPY
CevD6+HlfwpFD2pRcr8R8clJcLY9iiPbt+P4oaM4634eoaFxuJ5Vgry8UmRey4Sv+znsXr8V
6z/aAFtbN/iGX0P0jXoUPhxC1zTPYphEoFKzpImY7cbQowo0lKQgPtgTDod3YcO6T7B12254
+oQgJ78IZYXXUHjND9eCnRHicww2bofx0Z7t2GfvhgQCDv2tnagtyoe7my3efvdX+O1br+G9
9Wvx2aHd2H/CAfttD+OwzVFYH3eCg8dZnAqMQPh1ApotXRhY1DGg0rLA8mWWzFE/9xia4UoM
3I9DQRoBxpPW+PTAdpwN8kXNw1pmZeh88hCVhTmIC7qIiAvnEHzWi4DfaaLUj+CDdz/D66+9
j48+2Y291ucQGFOFzNJetA9wWNSKcUc0UzfLIM7imwhUYhJPOitxKfwE1m57C29vfhtHPFwQ
khqP66VpKKhMJ22RjPDLFwmoHcaHGz/A2l3r4XTuNMrranGv7gGuhyTD7rPDOPrJQUSej0Ft
TTsBqhnw/DA06qd43HYboZf9iALfiV+/9xEOH3dDYWk5lmbH0d1SjZz4APietoezy0kccPHD
Ds/rOB5ZhcQbDcgqrERIdBwO2Nphy7ZD2HvABY5nAhEQdhWX/WIRYH8evjtO4dJhXwRcIJOA
xFKk5NegpLwKlflXkB0XivPuQdi64zQ2EfC6EJ6MospilFdmIMjXBYd3fobtn63DCQdnREQS
4CooRmF1DW5UVuImgb6GthZ0DRIY6W3DvapCZMb6I97HDXHeJxDoaosztgexx2ozec7fxU9+
8xE+3u2Cc/HFKHjYixu3yxAc5gsHm4OwPbyf3J8DTp/1xPmgEATHJpN2rcCt8gbU3m3CHdKW
N4rSERPtjQD3g3Cz34OdDq7Y4+4L96AgJKTEoyA7Gddjw+B94gQObt1PxusunHEPQEZOKSru
1KK4KBfX4oIQ4uUId/vD+HT9bmzZbY/AsCDca6pEc1sFwuPOk3ZYj9fe+Q12HT6AS8H+yCew
m58eg7Q4P8SHeMGHAKON9V5Ybd8MD78LuH23FtN0hakxNhHM3fscTPFmeU95BagUUUSRPx6o
nJwciT7exKxUdLXfmszMTMTExMDLy4vFUO3evZsl9qSxVePj4194QXnhnOV+XYJpXzA52aAx
PQAHw8o4RtqK0ZgbimyiMM4dOYgPPtuF3+1ygktMBso7hzGp4Yii4xlQCaOzeHIjHzGOx+G4
YQMO7T6MbW4RsDqXhOCsO6hr68LYeD/qy/NxzsEOewmceTqGITe1EXNjehaMvDLZhMnem8hK
uQQXFyd8sMEVW45cRnByGR48eYrx/od4UB6LG0luCPE/hl12+/FLMqN/64AbfK7exPCsBsND
A7ieEAonmy04Yr0RAeHncfNuNVHoFQj288OuTz+F1bvvwf6ANUIjYpBfUYOH3UN4NkyAoO0Z
MpJTYbvbGp/87hNssSIzd5eLCLhSgYzqXrSN0iSbcvwHAQndOPjpVtzJjURKxGmcd9qPQzvW
w2r9ZzhwwBZxiTno6BzC7FgPhjsINNy6irSkADidd8PH+/dil60roi+noonU4UbcZRzYsQ6v
vvI9/Oznr+CD9euw3e4oHL29cNDmCA4dPQJrh+M46nYaDmf94B1NlHzlfbQMTImxTWyll4Yo
oRkIM21Y6q/E07pYZF3xwDE3a2w4sAPngn1Q3XgHy+pZdD17iNtFWYi4dBbB59wR6OkBLwIi
h3cSSP31h/jRP/8av/r1OqyzOg4792uIuPYQjR2LmNNICVxpgLReDAg38BME7PvQ1FqECyHH
CQi/jXUHPoPX5WDk3q1A21gbBuaeoru/GSVlWThz3gVvf/o2frn2TWyx3Y+MgnyUFpYh+UIU
jn20H0c+2IvAUyEovXkPnYPD6OlrRP9ANaprb8AnwAsfbbLCT994B3vtTiC3pAJjo4N43HAb
6dF+8DvjCE9PT5z0icKpmFJEFLSjoX0UPYPjKLtzByfJZ5u3H8LG7TbYYeMBx5MB8DkdAK8D
p3BuswsCjvgh/NJ1xCQVIyGjmMB2JkoyonAt9AJc7b0JZNrj7XXH4OQVguTMJKRlhuOk005s
/uh1bF77IXy8vHGrrAr9YzMs1m2K4zC2soJ5Ts1yis3PDKO5rpTVNeLscYSfscelEzY4Y3cY
+7Zuw29+8w5++PPf4TfrDsLeLwVXSu8jmLwU7BwPYeumtbDev5tZqAKjInG9uBT1rV0YmSLn
XQZbBDCzMI+W1gZkpIUj8PR+2B/aRMbRcWxydMchajH18UJUMLnHC95wsz6OXZ/tw5ZPDyM0
OAXNrb0YnZ5Gf38b7tfmITvxPC552OGt36/DG+9a4birI8qqsnCvpRChceew9eBWvLeBQKTX
WdwsL8PMRD/mRtsx/LSaxbRlJIfChdT7082fwvWcBwrKSzE4NW4MPTCu9HyRZUoBKkUUUeQr
AKqgoAAWQ3U5OhzJV+Kx5tVXX8WPf/xj0J80hurdd99liT1pDNXs7OwXX3B1gkb24hJMG77K
GZvplhtsKw0NuMUBDLTl425BKLICiLKxt8HHVgfx3j5XnInOQN2zYSxrBWMcETe5jNbCUkSf
cIXjRisCFoexxTEE690ScPF6HWo7xjFHXvYPqkvhQWbaG958G8f2OCMhPBu1Nx+gt7kNI023
Md5SjKKkIJxxdMJ7Hx7Bx1s9YecVjYT0GyjMjEOcrx18na3gaLMJa3dsx6uf7sQvdjjBI6kA
A7PLGBrsQUrcJTgf2YRjttsQFR+Cu4+bUHf/PlKiY+Gydx8Ord8IBwJUHud9EZScgqBr6biS
V4zMrDyE+AThwOa9WP/+Buzf54DT56OQXNSCW82T6J4hHcXLMUQ0J88k9IvdGHlSyWLEov1P
wenIbmwmMLR50zYCwAHIzytFXnoqMhMiEOXjilPOh7DJeh9+t2Mndtu7IzY+Az1Nj1CTm4Ez
zgfx4Xu/xPvvvIn1Vpux+eBB7CeAuv+wNY7aHMPxU2fg4R8K//gUJBdUoKa1H8Pz4qo3Hd0i
hq02W4Z+rhtzfXVorbuC68nnYXeSwsMBBBDAqblfhfGpfty5U4TLBBL2b/8UNnu2wWbvbhzZ
tQ+bP92CN371Hn76498Roid12HEKx9xTEZp6Hw1PFzCjlYGK7g+5JFqnhEmsLHWj4eENnA88
jo93v4cP9nyKI96euJSajIj0eKQVpCAj+woio4Jg73wMH1qtxdp9VnAhQHertgZ3q+4iKzgR
JzcewpH3t+PUwRMIC4tHZnE+rqWFIiMrHJHRvjhqb43fvv8hXv3Nu9h77CRu3LxDnoF5dLQQ
iEgIhvcpOzgdP4YDx5yx3dEHdt5xCItNRUFhMRKvJeDwMTKOP9uGzXsc4XQhBlHXSnA1JhvB
JwJwfpsb/K0vIiqQjIf0MlzPu4ns3HTWt1kxgTh13Bdr1x3HuxuccCYwAcXVxahtuIGgi3Y4
uO19bPrwXTgdtUdYeDSyC2+hpK4B+VV3UNXYgMb799D0sBHVFSVIjPLHyWN7cWjLR6y42e6B
3cFd2LJxA375+pv44U9/i9fX7oLduVgk5FUhLi0Z3j4n4WJ3iBRr2NnZ4pC9HU5cuEhANxO5
N+vYitvmtk60tLXi9p1iXEn0Z0B14sgWAu72sDrmAmvybPoFBiDtSiKLl3O3P4nNH+7AZx/s
winXi0i8ko7r2eTer0UiPvYCQi85wJOMnX2HHLHjgCN8/L1Rf78ID5+UICrZF7tt9uLTHTtw
6vwlVNc3gtfMMSvy4mgTBttuISs5CEcObcZnWz6Dk+dpZN8sRBeB3xU99/lAxZtFIihApYgi
inxJoNq1awc+WfchfvvGa/jXX/7MlIeKxlDRwHQKVCdOnGCbI7Pkgi+FKZhyKRm3LJGASr8K
qKhipvuf6VagXezDWE8p2uuSkRvjDf8zp8iM1AXrbc7CJyYT9zr6QfdqlYFKWODQXXcf6UGh
uGhnj9NkRnzUIwl7zmbicn4HGjsWMD0xj6Y7ZbhIFOq299/Fvi37cfZUAKKDr6Ii+yae3CrB
XHMt7mWnIPLsOVh9dpDMbh2x38UPZy6Fwc/zBFG06+G44z3s3foJ3rHaiV9tO4a1zoHwzbyN
AdIWo6OdyM+IwIVTB+DqcgiXE8LxoKMVTzqfobGsDClBIYh094KP6yk4OLnh8InTsPf2g0dg
GPwDQuF10gv2+4/B8YgzLgXGM7dP7ZNptE3oMa5lWz2LG9qwrWlWAPUkc/2Ndz9Aee41BJw7
iSN7d2HXtq1wtD+OAF+iPB0c4XKUgMK2DdhqtQ7v7dyG3+85gINuPoi7ksNWe422PkB+aiS8
3e1x0tGOAPNx7LOh7j5HnDrtibNeFxAYFo2rOYUoqnmAuif96J0W0yjQfRQ5DaR8UgT0loaw
PP4Yva0luFkYC9ezJ2BzyolAaTLuPb6LwZFOFBVfh/fZ4/jk/ddwYOcGUjZj/7bt2L6RDL73
rfDe25thtZEobhs/+MVVI6W8F4+GtJjjRaBi27+wIHi6TckM9LoBPGwpgk+IKz7ZvRZvbV2L
Twm8HDzrjWNnvXDywnl4ep2Du7s7nN1ccfTEcbiH+yOz+hb6p8j99w+iIaMQoTZucLXaC6dd
++Hg4gj3i+4Eau3gRYqjC4H0XaTt1m7AWx9vhb17AIoq72NhWYueznYUEHALunACJ5ytsXX3
Tvxu4y4C3Ufg6HwSgQGXcNbHE3sOEWjcdQi2bgRGMipQ1zaB+jvtyAzLRNgRP4TaBiIuNBMZ
ubdRVFGFispCPLqTgdLUy/DxiMTWneew9dBFRKaVoJ1mZZ9qQWlhFAI8bWG3ZyccDtvCyek0
Tnv743wY+U4onRVdQ1YqgbpMAizJsfD1cCVt/RnWf/gG1q99EzaHd+HQ/l3YaLUJb77zAX71
+7XYsNcOFyJTkVd5DyV3SnEj7ypSE6MQHuCD48cdsGnnbmzcb40DLmfgGxxPJg7pyMgpQX5x
EYszS4r1wWUfW1w6dZS040k4ePjCP/Iyim+RZ/pRExoqqxDhF4oD2w5i2/rdsD3iAA8PDxbz
5+HlBPcz5Bmm8VAuDggIS4Z/eCJyi7PQM/IQfeONyLyZgFO+HgTSTiIo+ioePOqAoJ1nQKUa
b8LYs9sozY4iQHYEe633wCvgIoqqyllfq6Us+zQMge4s8FKg4hSgUkQRRf54oNqyxQr/+//8
QIyfouWf//mf8corr+CnP/0pXn/9daxdu5bloSojgLC0tPSHAZXFdi4QN0eWgIptWGuWEkDg
1eSPo1Av3sPsSDmBqhzcKshGeHIeApJLkV/RjMHheTHBppy1nPw+OziKprIKlKWkoTizFGlF
TxFfNIC7T4DBUaL4p1WY6niCu7nXcSXMH2EhkYiKTkV6WjkaylswdLcdhqEJLD9uRVNhASL9
AxAUHkMUegaC41NxmbyUY866IvGCB4IveOO0fxxOJ5QgrKIduU+GMKNXYUU9yHLqVN9MRE5W
IipqK9AxOoDxhVlM9fSgq6YGHbduoy63CIlxV1nguX/sFUQmpyE5KRXJMcmIj0zAtauZyK+6
zwLSexc5TOlNKQrUeiltAs16raF7CKqhmZ1G35NHqCrJReaVWKQkRJISjqtxZLZPVw0SYAs7
dw6+PudwJjISJ2OTEJRejPL6FswMj2B5qAvPHpK2y7+K/OtpuBZ/DUGhsbgUdBmxMUmsXEnL
JgDRgPq2Hubq653UYHIRLOmmab89LUsrYVCPQDXbgc5ntcgsymDB39UP69A31o1F1ThaHtWg
kFzL/yJRiJc8cemCJy7S+nldJJB7CR4ng3HROwlhkUUoujuFmk4deucNbCGCmKJB3OaH7tdo
0JH6z3egvjEHHhcdCMi8jX9Z+zY+OHgE+z384B4US9o5gS3Fj4q4iuRr2UjMyEHmnUo0j/Zj
GVrotSuYe9yGh6npKI2KQFrEJQREeMI3yhMhBOgjYy4hMNwPF4OC4BMcDe+QRCTlVuFx/wyW
yNiboCs475WjrPAKstJjSNtdhLOXF9zOX4C/vx/ioqmFKxD+ZNyFkrZPyCKQ0tCN9jEBQ/0r
aCsn4zKBjIukStSUPsK9pk48fvoU3d0tmOqqRg85d2leA8Iv30ZIwh1UtgxiSj2B+ZUOdHeU
oiwnFmnRkbgSnYDw8DgERMYjNJmM2aspyLmehds38tFYQQCurBRZKYnw9/GCx2lnAplu8Pb1
wjnf8/DwPgeXM55wJfAcEJWEvLI6NHWQOna3oau7Cc8e38Pdqlu4fj0VQVGkDcKjcSGKtMP1
ImTl38atO41sNV1dYxmBxGw8IM9AQ9E1FBAILyipRv29hxgaGcTS8izGqfu95jazVsVFhZES
guQE0u5p8UhNu4KEK1cRl5SJxJQilFc/RVVDK54NtGFZGMQi34lHvbXIr7yJtMJbuFndhP7h
GfLOWAa31A/NZDOWx+6iq7kIxXnxSEojMFZ5C497OzGjWTYmPKWr/V4KVDoFqBRRRJEvB1S2
tkeZheonP/0R/s8//y+sSU9PR0REBIMoupcfTewpp034IpefEajMt2xZZaHS6mC5hxpL1kgt
D0Pk2G7yUpuEZnmB5Z3qmeQwt2Kw2AZGpxZzWPFqjuVxojmNpofnMEoU8MCcge2LtkIKeRPD
QPNmzY5hZrAbbW1PUHO3BXWEuLraRjH1ZASGZXKmRRUwOYHu1iaWx6byQRvKah+isqiQAFsJ
eu81ov3BIzS2j+D/Y+894OM+jntxWs95cSLLlmRZsi3nOXaeX/LPP4mdOIktWbJkyRIlUZUq
bBJ772AHCJIgQBIgeu+9995777333u7Q73D97ntvdu8OPMJUpeRnJbf47OeAw69smZ35zuzs
TOeCFr0kUPuk4Hn4dA7S03wbSiKZ40ESJfqo0lqlAupZAbTCBSimhehp70VJZS2SsguQXVSB
2uoGdDV3Yah3GONTQgjomSzv4LwKa0E05frcdUqNLkI1y9mnZAFB9QmF5QTclmbHIRjvRXdr
JYpzUlBXXI76kioCjUWoqapGzcAgqgh8ds6uQMyc2+R6fyTNMlYXx7E8PYWJwQm0tPSgvqkT
pXRvQT4J8bJqtPYMYWJxFQsyFvxUF3DzToJlfZJlJQM7OusRC2cgpr+HpsewJF2CTC3hAThX
xNNEO2Po7a5HR2sNmhuq0UTj2t7Ugc62QfR2TnGgMcfGd0KLIfpkpxyl+mjcuvyLIt5mrXqe
aGACTa1FuOFkiY3vvYbfvvkadpy9iOteofCJSkdYbC5SU8pQX9uNCQLjozMLGCNaYCB1mQfn
ZH571G4S+OqJYQiGWlDTmItsAvNFVdmorC9FfWMNOnp60Tc6i/b+KfRNiddCWTBCFy9NYn66
F7OTvWhtr0FeSQGBgRLkZKejtCgXlVVF6OrvhFAkwZxcixmlLpaXijnaC6lP49QGIYFkqS6Z
N0slpNVKeAwsrWoZSqLNsXEtukdVfOuXJ7leHeKhKlbn+rE4SaCe6Kqrsx9FlfXII9rKL69C
XUUVhggsimcEBDiWMT8zie6uNrQRfff0daK2qQ5NHW1oH+hF59Aguod1kckXJbr0MlIFU5pW
CXSKsDA7if7+XjS2t6OkvhlZJbVIzChCfnEd6ls60Ef3T84MQ7Q0TOM5RrSwALlICtGKAiv0
KZGt8jRTSpUYUukixMsCzEz0o62pEqXF6Sgry0N5ZQVKK+rR0EbKyYQUCyIWMgO6pMtEUyrt
HObo2SPCSaKrOcwsKPTx6FQ6ulNM8KwFWuUUluaHMD03CcHqMk83dSfaP+4dNmE9qDJt+ZmK
qZjKfQCqy5fNYe9wi/tPxSdEY8MzzzzDT/c99dRTYL8zCxXb8mOn/FZXVz/9hZ8aMM8oWCV0
Odt0R+IlekuELu+bIf/YXacFNQDW/c0d3jX6fGW6DIK6H27JIubLmLpExNsuEsswRUx5cU7E
o3TrwJ6GW9BUMinEYjHGpmYxOjmDaQJXsxOjJLSmsThPwEUkw6I+8KdMH3CSB5rUh6LUJfKF
ka+Gmr9fsyohIbMK8coqlpZFmCSQNSuY4744omUxjxivVGnuRApfl+7l7rFal1CEgTelHKvi
JSwagjAOj2BydIwnamaBH4XLJFSlMqwo1Dzau+5O1Vp6FRYlfJWEPmsPa9fIyBjGxiYwOTXD
/55bEpEgl2FVriIwrNEFGDU+bKDRhzTQJxPW8ECc0H8aDiIo9aEP2MECEdVV6reU910qUVJV
6atmLfXMWkogfkpUufYeZtFcEc2jua2ex5v68MBubN23CzYuLkgrLEZTezc6ewYxPjaDhfkV
/nyFUs0Sl0AOQ8BIffobBgjlUh7EcmFxVieM56YhnBfQIlmAWLLK+6zEukTKPFK9AkoCZxIS
3kvLc3TPHN0rhFA4i/k5w/0iul/F7zcId0OAVuNk3Bp9zkY+RtxfTMGv0WjuRMjnY8mTUeuS
GNPL+RiurIgxT3M3LZzDNIEoRquSFRE1T7mWj1BJNCIicLWwMMcDfq6IRbxvUrmM057GKPWP
di1hsoanDGJR19n188srEC6ypNCLEM4RvS2t8GcoFDJdVHWWXBnKu9aorqjXKludUskKVpbn
SYeZJLA7RnUCM7NCGkMJRBL1Gr3r6Eehzw2qWMvlaPi/1sA3+PqT6D/vpChSGWWW0mg/O58y
FVMxFVP5ooDK+JTfM8/+RudD9c1vfhOPPfYY/uEf/gEvvvgizMzMkJWVhfn5+a9Nh1nqDZYQ
V6kkgUrAhgkGLhxWVng8LfY/4xxf7Hp2HbvecA/75Ck8PiEX2Me9n1XD+9l72TsZqGOV/c5C
ULB3sBQgxu/4PH00bjd7JgOEhuezd37c8+/3/vspPEnxx1Se6Nk4JpD6j4UdawsDAiwCelJa
Km452uOmw23EpCahubMds0IBt6Tea44/S//ZvLC+y+XyP+r7+sr+x65h17J72L2fdv+XSd/s
+azt7J0G+mKf7Lv1i9/QR+P5ZbR5rzEy3GOgX9YXwzvut3+GtrNnsPFmdS1VzpcwPqZiKqZi
Kv+vANXmzW9zH6r/8U29D9VPfvIT/OxnP+MO6b/61a+wceNGDqjYlt/c3NzXbgAYozau6wXq
562fB+wY3s8EExM+rN7v8w1C8OPe9WnPv9/7vyyCvGc1WKTUHw+otPogjQsry+js7UFRRRmK
K8vRNdDHv+Oxhr7C/t9v/UrH7zNUAx1yAHuP9bAGbo3Wy+d57/2231RMxVRM5esKqFik9Bf/
8Bz+/h/+Dv/rJz/ChqioKHh5eeHKlSs4ePAgdu7cCQsLC+Tk5HymsAl/DgDqfoSPQeAYLFXG
lX3/VQu8zwoQP8/zDKDOWFB+0fv/pIBKc28LFY/Ir1ZhRbIKActpt7SAFZmEOx7zGGj36IPB
mvN5+/9fDVB9Wr3f9fNF1ue9/mcqpmIqpvJ1A1SOjvZwcr4ND08XBAb5YsPmzZuxadMmvtXH
0s689tprPFI6O+X3aaln/pwA1WcVHndtOX2CoP2yBN6nXXe/zzcAQoMV4vMCqU+7/08CqD7B
v4W3jSU4hmbNr4kfiafvWM42BrQMW1HrLYQMFH8eQHC/IOJPCajuteC/LKvs5xmfz2JhNZ4f
QzsN82MqpmIqpvJ1BVTslN+u3Tvw3vtv49333tL5UD3wwAPch4pt+7300kv8lN9/NQsVK8aC
1sDo79e68Hm3XO4XUK3/3+cVop/3/i9jfj6pfpqz8Brg0xhF3efpcFTct+rzAoj1/Tf4zn3S
HK0H5AYaYvd+2v1fNqBav6W83qJoDIjvx+pkmJ/77Z9py89UTMVU/qsCqg8+eO/uOFQsoOcT
TzyBn/70pzxaOgvsyQBVdnY2FhcXv5ad/zzbWvdyRjeAr8+iQX9Ry9QXEUiGNn/RLawvcv9X
PmefcvLqLsuifosPer8qZp36PPN+r/5/Xn+7TwKJnwaAvwqa/qT3ftHtvI8Dw1+kfyZAZSqm
Yir/VQHV3r278fzvn+H+U9977Ls6Hyp3d3ceKoHFodqyZQv/PTc3l5+Q+680KPdi5oaTbR9n
DfgiFiRji8GXAaiMrWvr22os8IyvMd7yup/7v2pAYAysPo2g1ywv65yqjdtsbEkxPkn2cf3/
uvtQfRp9f5rFaj1g+qLg65Pab3xCcf1JUlMxFVMxla8roLp27QocHG0REOiDiMgQbGAJkffv
38/B1Lvvvov33ntvLfXMZ4lD9WVZjf4U1cDUjS1Shm0NgwMzK8Yn9Ezlqy+aLzDMnzWGkMlC
YiqmYiqmYipfBaBigT3NzpzAkaMHcOjwPmxg/lMPPvggfvjDH+Lv//7v8eyzz+LkyZMcULF4
MV9Fg4xPYn2ahv2nAFoG64VBkzdp0H9aMPVJARnvBaQ+T2DGr3pLzlRMxVRMxVT+ewIqlhz5
N0/9Ox793nfwP//yAWz4i7/4Czz00EP40Y9+xJ3Sf/e73+HEiRN8y48F9bvfYggUaLAAGW81
sO+Nt5vudcrsfutnBWWsGPymjLfqTOWrB1Qqo/plR7r+qp3GTcVUTMVUTOW/J6D68MPteOrp
/8DjTzyKbz/0LWxgDujMIsW2/bZt2/al+1AZ+1Csb6BxlPL1kaeNo5jfTzV2PmcAjlXD9wYL
hrGlil1nAlT/b8DUFwFUnyd9iGnLz1RMxVRMxVS+LEB16dIFnDt/mldzi/PYYGlpyQHUsWPH
eFDP7du380TJXyagMkSsXl5exuzsLCYnJ3lOL1ZHR0cxMjKCwcFBDAwM8Mp+Z9+x/91vnZmZ
wdjYGPr7+9Hd3Y3e3l7+N0urY0i9YgyoGOBaP5Cm8tUCKqVRNQZW9wRT94iq/nlBlAlQmYqp
mIqpmMr9AirmQ3Xx0lleLa9cwgYWf+rJJ5/k/lP/9m//xgN8nj59mgOqLyOwJ7NMMeDCwE1V
VRWSkpIQERGBuLg4pKen83hXLG8g+z0lJYVX9jv7jv3vfitL8pyRkcHfFx4eDnaqMS0tDaWl
paivr8f09DS3Shk7qJsE7p8HoOJR0DUmQGUqpmIqpmIqf36Aas+eXXj2d0/hR08+jkcefeiO
DxUDVQYfqi/TKV0gEHCLEAMvDMzcuHEDV69ehZubG2JiYnhEdgZ8GOhJTU3llf3OvmP/Y+24
38pAWlhYGDw9PeHi4sLDRPj7+yMkJAQ9PT0QiUR3bUManwo0la8WUDEQJf8igEp1B1R9Uvmq
kxebiqmYiqmYyn9PQMV8qP7z1/+G7z78oC5B8o4dO7B161awFDSvv/463n77bZ56hgGRL8NC
xRIsT01Nobm5GbGxsbCzs4OtrS0HU7W1tZicnsL4xDAmBjsx3tuM2e56LPY2YHWwFYrhLsiH
uqEYNK6d9B2r7ZAOt0My0gkxr91Ue3ldGe3F4tgAhOMjGB8dQ2dXDyrKa5CSnIGwkHD4eHnD
w8OLgJUnbxcLYGp88tAwcMxa9akDDjVVpe5Tc+dbhgZIdN9d17ay1GtVq9FXo+/ubHfd+zl3
3qte14473xmuVWnX3acxupaDFB4pcx2Aufte3X3seiX9oqTr1Pdo07rna/54pNa3lfVVdU8g
pR+bu9p5p2131bXx19c14KVLazMnnIVwXoC5lRUsyqSQKDX8St0ca4zGX9c3XtfGVfcO4zlQ
6VPfqKiNSqpyFrWdbWnrv78zx/pxXTf3fOy0aqN33GN81oNI47FYG5N7jM3auOvbCl27dG3T
fWf8vDvvvXv+DN9rYAw478zJHfrVj7Ohaj5mfehpR6tm9e42ftw43Xmf0dwatVlzj2pM63ee
rb7r/rvpaL0v3p22qIzGzLAetVi/TtV/NN9rzzA+vfox7dVA+7n9Ae9FGwaa/WPfwzv0e/d8
qtfRnXbdeKjvrut4zXpe9LFt+yw+j1ojnqIfKxi18651ubY21Wvr/s73WHdc2EDrbN4Va/XO
u3TVmMcY3mn4n8poftdoUruOltR3eBE09+DXd7kvqO8aK1P5+gOq06dP4uChvdi5azs+/Ggr
Nnh4eHCrEbNKMf8p5pT+ZfpQMbAyPj7OLVQMUDk5OXELUXFxMQm6Oai1zGF9CVrFBLQrrdD2
pUPbHAVtfQy0JWHQlsZDW5ykrwn0dzS0ZZHQVkRAW0m1ib6riARK6fqGDGhbc6FtL4R2vAVa
2QIgl0Oq0GJ6WoTW5j4U5xQjLCAE7q5eCAoOR2dn9125xowHz/DJLBz3CtKpVrFFKodSuoCV
+VksCgUQzAgxNSnE7KwIiytKCOYl/P2GPHRqvgoZE5DTM6hKVnVVzbYaVdz0wq5R67L+QizW
QES4VkTPWCWJLaVLFCqlTkCBBd/Ut4uJTwZ4FFLeLiYMFHphL6VnKTWG/HkGUaviufQ0Ug1n
Bip927QqWvQK3d/sXtZDtZKulYhoPBeJJYjpf6q1/sjUuk8YcvOtPZ/mVclOcWrXUsas5e/T
t5UxJmZBUqo0awcXdGOqWle56NGJNO0dYcd+V8qYdXGVVxW1D6sSKBdWsTA4jbHOAdRXV6Ci
qQqNo8MYpnfN0hguKRlZSKFaXYRqeRHShVmIFqeIVscxKxzCxOQghIIZSMVKLM3KsTgHLC1r
sSylSvcvauRY0CxjTi3CJPHocRovIQ2bRD/mhvFgVaEfHwZqpGqiFZpz9ZqAYAcmwCvUhrEx
AEXD7/rxZONCbeafGvpbJoFkYQ4S4SKWpgVYnpmFeE6AhRkBJkZnMDy+iFGBEqMrWoyJtZhY
kGJlVbE2/kopzaNKwduoMX4fG2f1nRQ/XMDxuWOKhlJHs1woKXVXExrWUv+1UlYVOkGj1QVf
ZWOsayt9Ls/TJ82TUgnRzBwmJwSQ01iKVxVr72JVodEBa9372LukkC1PQyESQrG6TOtrlhSw
WQioP8IVFcYFK1iSqjmNr7KqZCtSTx9cmin4M+g/fK1q1RqdEFRp9VOgF316oSiXawl0a9eA
sozNHcsjycCgit0vg4aqWsvmUgGRfBUSBf2uMho/PR2sEo1LWd5Jo/4x8S1X657N2sjfqxfK
GoUSSrlCz3d06EPJ+YI+Zh6tTTX9X6sy9IGeppbw/hn4BsseoNavF/6jB7sawxqHjsewZ7Ln
rV1jUFDY+FB/OK3R+sWqaI3XGObVsAblBuByrx82rszaz1woDCCa8RG1Udt4v1jbiWdRm1RG
a0f3KqVu7mhta6iC/y43qlLihQvUMrFuvekVUCXNoYLxNcYnGW9QzNHfU5BLZyCWzGJJQutG
vcrXIc0w0dY8VuaIhy8tY0W8iLllAWZWpiFg19FYsjmUER1LiNesrgqJL1AlprBMvH5hnOrE
IoSTy5ieXMLkJMm7afoULGGK1uakUIjlVTEWluYxMzuBVfEK53F8LHC3PDEcpDLtkHx9ABUL
7Hnz1nW4uTvBz98LG37yk5/wtDMGH6pXXnmFO6kXFRV9KWETPglQzZEAUKokkM0NQTtYDFmh
J8acP0Tf6efRt/8pdL7/72h/kz5ffwY9m1h9Gl1v/Ac63/xXtL7zSzS9+y9oev+XqHjrH1Hx
9q/QvOtF9B97C8OWu7AQZgtFbQ60xITlMg0mplbQ3NyPouwihPsFw93FGyHBkZ8JUH1somFi
sApafJP9bagrLUBGcgIiwqJpoCMQHJ6EmJR8ZBbWoKq5Bz3Dk3xxLVF71BqJbqGrV3Rau0oH
HBiHZ4xFRkJAKmNVjUECBoPDQozOrEAolmNVodYxWSYoNDpAwsEe05rUxHAIUGnomYzZienb
ZRIOS0xI0H2cgTKhQIJNI5dwsMkFC2e2Gg6UGMMjvEDX0/1qPdNnPyp6tpoxrlUSEKo14WAA
N4yhMWGgpueuASEjBqygd8jkOqd/DWPYal37DcJC96M22FV0/6O+QEEsTSHVMWTtHaBnEEgq
OfVSS1WzhLmpPvTU1SEnOhWhDv4IcPBGoH8AgmLDEV9RgpKhIbTNLmJofoXT3goxuO7aKtTk
ZyIzMQxxUX4IDnGDt7cjfDw84ecdgtCAFMREFCIlrR55pe0oaWxHWXs9yjrLUNRRjYTaZiQ1
dKOoux9dglnMkyCSsZAgKsYg7x4jBqhkWsbIpRxQqzXs1KkSCrmGKgEJha5qaJxYhVwvkBgo
YZUBVLEIy9OT6G9pQlV+LvKSUpASEYW4gABE+fkhzDeAt9snKAm+MfkISqlAUmkLqlr6MDE9
pwenbHzla/PDx5XeK5NQe6QyPo8KBjoVGiMwbABURKNEC1IadxVdpCXa0sq0uk+l3g6iNYpm
z8DG7DSWOlogbK7HaEM9qvKKaP3XoneQhNvS3YBKybV6te5dqmUsC4fR1VSKmpJMFOWmIzo6
Gr5BEfAPT4FfeBrC4jKRU1KPlp5xDE0tY3ZZA7FCD1oUKt5WHeBmNMLWh/IOCGSVLzumiBDd
K+8ADwakJEbWRw2NPwNSDFAREqc1JyIlZRWzS7OYJR63sCCBSKTWzbl+vhmQklJfFAYFgNGC
Rtc2qb6/fMxU2rV1eFceS416LYflWiJxlREg5OBQrAclSrqW1r1SwRWUNVBusJ7AAPI1ekCl
0ltw1ll8maBX6sA7JMt6AK/Q8TqFDDKVmo+H3KA8qNdBKs3HVG7cUd95Jww0RfxKK6HxUd4B
nRrtGk9j46xWL/M5BJ9HHaBn/IMxKiWWqT2rOiBmsOir9CCR/isXTVM3hiCY7kJHWzly8hKR
lpOAhu5aiGUCehbxjZEOlOXlIDY6DiFREYhIjkVqaTZKmmswJBAQTYkgWBSif6ADDXWFKM5P
RlJ0KILcPBDu4Y9Q1wCEekUgKox4RUwGImMzEJeai4z8UuSXlqKytgYlZcUoLMxHW2sz99td
Fct16qfm7sDTJkD19QJUR44cwot/eA5/879+qEs9w5Ijf+Mb38DDDz+Mn//85/j973/Pc/kx
/yXmTP5VAqpF4Qy04gVguAWayjjMeZuh/r1/QsEv/wqlf/dNlD7xTdT+6HtoeOJxND/+A7R8
/3G0PP4Imp/4Lpp+8BAafvQt1D2+AZUPb0DVoxtQ/8O/QNPPvoWOp5/E7Km3IY92hnZpkmtZ
46TF1zW3Iz8rD6H+wfBy9UFYcNRnAlTrY1UZtImR/h50lBWhKD4Sgc4OuGFpgbNnLuLEOQtc
sHGAtUcAAhIzkVxSjfquPgxOTWJZtMQZsla+BNWyUKdFEaNREuOXESCSgbQu0ny52ZkWW1Vl
HaqqG9Dc0UNazzzXhlUMOClJc1SJOaNTq4jRK1d1gEqrW5AKvVCQ6X/HmhWLBIJCTDhFBBkJ
Zy0JUAZw5MSoFFy66K1vRsyN38eeLVvEyuoc5kWLEEmUHDQsSxRcQPDcegR+OMBRSqEi0Lay
snRHmzVYu4wFtB50MWGlJGbN+8FFqpz3h1mQWFvFy6QNLi2QhiiFSKbCzLIEc6sqXb80TNtb
wsJMH9rrS5AWFg7r05Yw22mGa2dsYGfrBI+gYEQV5KGgqxOtU0IMChcwPTuDhalxVOdmIS08
CN63r+OGhRkunjyAYwd34/C+Qzh6+CwunLuN69f94OmdhKiEAqRkFyI5Lw2xWWEISYvAzfB4
3IrIQEBmAUo7uzBBi01E88ksU4zByxT6DScmoKl/UiYgmDWN5m5VvESgmQC0XMMtI0qFrmpU
RsJpTdBquHCTLpDWO9iPupJipMVEI9jVFQ6XLXHxwAEc//AjHNq5Bwf2H8fRs9Y4Y+2OK05B
CIwl4VBZz9ehztqg4GO6uCDQWxE1nJ4ZODemd5YcnTEPdiKWbd2zv5nVeu3gBvuRccMBVRWn
JaVUxkGiWi8oIJFicXgY3UV5qIqLQlpgAI21K3x9I1FY0gzBzOpdFjmdUNRZp5Srs+htJUAY
7Q1X+6u4cd0CZy6cp75Z4MRlO5yydISNvT9CCFgVl7Wjs2ca0wIRH0/d9hE9g5QWZgFXKpeh
kK6QgCWFYIWbE3XAigFBhYoDKmMLk9poq9RgqVPSWElWl7A4N46ZiV6MDXehp68THT296O4b
xcg4rY0lnUVcN+cqXqUEUMQ0PquyOxZLtWHLmcaLVWZZlSytYGlunsab1he1U0bjKBJLOEBi
VkNmnVJL5TpQSG1moEdFa00mF9F1NDeiBX5qWaFQrfVFxkzaGoMLg0ofOkZKr1um+ZyjOZev
XauU320hlstEBPRXaQpXOIBmfeEWbyO+wkE1UwiZ8Kf2ysR0/TK1XSSFUqK4Q8MMOKr1QI/x
UJaCiHiElNohpfcw2pNIZLQmFNRm9VqbGZ9Q0lqRymhdiecgnJvG2NgEt3DOL4i45eguyxZb
d9wSprNgMSVrqK8ZddXEG9ITERzmj+BIf+SVpZOiWofV6QbU5YXD1dYaJ06ewd7TZ3H8mg2s
vLzhGR2L6rYeDI5MYnioD1VlWUiJ90FUiAvcnWxx7fw5WJ88hbO79uDkroO4ePoSLl24TjR6
DdduOcM3NAIxiSmIT05CQFAgl3tx8cmoIaVsfHZVx6Pl6j8KMG38t6n8+QOqX//mV7qgniw5
MjvV99xzz+GZZ57hlVmozMzM+Ck7xkC/SkC1xADV6gK0BKi0pTEQORxHy8v/G+U/ewDNT/4l
uh7/Nvq+/wQGv/c3GH70bzDyyN9g9JEfYuR7j2P4sceoPoypJx/B9BMPYYbq9ON/jUECVv0/
/xaW9zwHbZgNtAv90EiEGJqeQAVp9dnZmQghTd7P2ROxwdHo6vhkQLXeMmUIEjlMQiI5Lhq3
zp7ClQN7YLbrI5w6eAgXLlyCtYMrvGOSEVdcgcLWHrSMz2JKTGBApeRbBwwkyBYmIRwZQFNN
HWqoFleWorC6GDVttRgY7yfGMUXMdRZ1VdUoLy1Dc2sL5pYW9dolgSqJAPLlKQinhzA61I2B
nmYM97dhbHQQEzMkWFbEmFOoOfPjGiUxreX5CQjGezFOgqCXCYL2ZtSWFdA7CtHQVoO+iX4s
EPM0WJx4Ucp0Wy2Tw+horUNJeQEKSJjX1jWjo7MPY1OzWCJgBr31QqNkAEhADKgX9Y116Ozv
R+fwKAamhZghJivW3NkW01kiCBgpJcRERVzj5GCKSWhioArRLO9fV3sDamsq+PPqWlpQ296J
4Zl5/py5BSE62+qRHh8Ef6cbsDpxCttfeg/bNu6BxenbCAtNRlZpNar7+9A9L8QsDT/btluh
NktXFjHV34uu6goUJcQg1Ok2gbGTOLFnD04dNYOFuS2c3SLhH0KgK6Me5ZUdqKltREFxFmJS
fOEV4YkDVg7YYeGME3Ye8EtMR3FjC1q6B9HdO4mB/llMTov5lq1hu1cFCRfubIyERJOtbd1o
7xpGT/8EBoanaK0IuaBgFqv12yhsS0hG87osFGKS6K+faCI3PgZBt+2IBg/g6AdbsH8HgcFj
53DO2gU2HuGITilGdW0nBvuHMDsxgqX5KUyO9aO5vgY1FaUoK85Dc1MttbcLg6MjfHuCzf3M
9DhKC/Pg7+0BN1dnuLl7wsc/BLEJqWhsaodwdg5i4g/imRksjY1ieqAPw50d6Gyh2tGLiYk5
Ah/U3kUxhP0DaM/PRkF4MMKcnHHj4lU4EBDKyq7F5OiS3tpiZM1gVlRSLCQLo6gvS4WX42Wc
PbELZ84cxpnLFrC47Qy7wBi4E5CNTirhYKqnS4ipcRqbhVVuJQVEBKYWSWh2oKO7CQ1Euw1N
9WhqakFrE62XNmZZFlGdwvzELFbmlrBMdYboeWpiGnMCUh4WJQQwtFxxYL53SxKJTqAPdWKg
uQrttSVobWlAfXMLmtp7ad0KsbCq5tvgIhpHoWCKC+Lurg40NbfSXNMYD41BSPMnIdpTEghS
kdKxODnBx665thbVZVWoIQWqp3sAM7ME/InOxatyHaAi8C0hZr4imMHcyAjG+nrQ1dWFuoZa
VJQXoaaS2tPYhP7eIX7f8qqMW8Q5zyCVZ0EgxMQw0WXfINo729Da3oSKigp0tHWir6cf3aQQ
jAwNE89moI4UDwLutUQnfB33dWFqjmhWTLxAtIJFuUy/ZankVlORcBbTo6PoJ8Wxg2i6t2cQ
42MzpAhJIBbJdEqCXjHQSMRYIR41NzGGZmpve2sH2hubUV9Zi7qKGn7/5JQAi7RwpoUCdPR2
orgkD9Ex4XB2doW1tT1cibZjk4u5VXJOpLzj0sB99ZiyuQCNTIDO1iqkpSbAzy8AEZGxKCwt
IcW6BpUNeSgvj0VxshN8bA5j79a38Mqrb2DT9j3Yc9Ea133C4Z+ch45BAnHzclqrU2isKkB+
RiiKciORlxWPpMggxLg74cap4zj20Uc4fvAojh07i/1Ur9xyQlRSKmqJH5SXlyM8NAz2dg7w
9g5GRk4FWnoJEIq1WFyR3pXmzNi1xASo/vwB1YED+/DBls14bdPL2PjKi9iQmJiIoKAg3Lp1
i4dLOHjwIK5cucIBFYsZ9ZUDKsUytKOt0BZHYs7mIOqe+VuUPrEBjY99Cx2PPILuR36E7od/
QvWnus9HnuTfdT36A3R+7wdo+s730PHw4xj9/g+p0vUPbUDrj7+BqW3/CVnQZWiXeyCWTaNj
ZhgFzbXIyE5BuK83CU8XJAeHoZeE8ycBqvW+U4Z9bhYvKyEqCgc3v4N9m17F7jffxJHde3D5
8hW4BQQhqbAMFb0D6CCmOEmMUMz8odQqrhVODPejp7EadSVFCA+LRlB4NNyDA+Ea5ImIlCiU
1xehp6eJg6SGymIU52URky2DQDjJwcaqaAojPfVobyhAZWEKMpLCEBPhg9ioQMQnxiA5JxtF
Dc1oHR7jjI/5BUyNdaGlNheluQkoyEkkgECALzEKAV62CPG3RWQsCbiSTDQMtGGEhO7ikhDi
xVmIhROYHulBXX05ElLj4e3vBw9PbwSQcI2MiEUrCYLBsQHMCiYwNTWAgd4W1NcUIyk5Fl7+
dF1UJALjExCTXYCixjZ0TwkhJE1bB/SwBhAB6Zq/hGhxnABDO0b6mlCYm4SkhBCEhfkhLIIE
ckwU4jLSUd3ahqmlZW4dSEmOx62rZjh/6EMcfOcDvPrvG/H6sztx5pgTcvJa0T06jykSLgs0
xwbNWmnYYmTCW0RCqo800Nh4OJpdwLEtu3Hm+CXYOwUiIaMauRU9aOsWkma8gJGBQdRW5iI+
3hUuvrbYcd4aGw9dxTvHLGDu5I3AuDREJWYiMjoDMdHZBAR7iP4XdVtocimtqVH0dJJWXJ6P
wpxM+PuHIzA0gW8TJKXlE1irQVvnEAm0VZ2lxMg3R63U8K3AtW+UcowQUMiPDoHH+fO4so+0
5JNnYXXDCS5hSQhPL0FvPwk1AQlAEl59LdWorc5Dbm4yEmMikRgZjhBfV8THBCM5IwXZBJSb
e7oxRACpvCQfXs522L3tXWx+8w28tXkLtuw8DLOLNkhMycXY4Djmx/XPLM5EVkI44kKCEOwX
hNCQGOTkMEE9iL72PvQ3NqKtMAfl8dGI8fDETQtrAlSByM5pxPjQis5KZAyqCMRrNauQCgdR
XRAHO6sTOLDrLRw/uQ+XrK/jll8I/LNKEV/WhpLaPvT1L5KyQPMqonldofsWSXGYbEbfQBXy
CtMQQWvCL4L6GhuDuKRkoqdsZCbUoii1GWWZ1ehv7oVwchajg0OoJeFXkp2DtsoGAokTBGDZ
mpVhYFKAVgKG9QSgGoi+O0tzqBIYra5EZVUdqps6MCxYWtuKnhgfRQMB1vy0RGQkxBK9xCI1
PQ1lZSWkADRioq8VwsEOjHY0EWgsRE5SIucnUaGRpAREITEhA3l5pEg1d9O6WoBcquKWHwak
2+trUUk8ITMlkdZZOoLCSPj7uCI8wIOEfBRy0nNRU9+GPmbJobFgW8xqxSq6CQiXZJYjLYEU
goR4pGQmISosFKkxsUgnOZCemEzrLQ81VQTQKqqQmZmNyCgas/hEmqs8VNRUo6WjHf2kCM6v
LHBlSEIga7ijBZX5efTcBESHRSE4iIB8dDLSswpRUd2Ejo4BLMyv6FwLRGKMdHWivqQAFXm5
SIpNoX5kIz0mAVHefgjx8EIqva+uvgVdRGO1BLbScnLg4+OFSxfP44P3tuGlP2zG1l3msLSN
QGHNEHqGmeVco7NsEpDWQgCNdJAUj07k5SSA+Qlft3FBREwGV1rYLkHvQD1KCojugy1gd34L
3nvtd/yE+8tvb8O+89dhF5yImPwGdI7KMbtEwGdRiuGBbvR1ltEcVBNPbMJIRxUac1Pgd8sK
x/fuwcEDR3HUzBxnLG/BOzQOFfWtWBGtYmZiHMWkyPuSUuLrxXh0Hkpr+tE7soJpAu7MR9c4
g4jx76by5w2oHB3t4e7hjNCwQCQmxWLDP/3TP+Gf//mf8ctf/hK/+c1vsGnTJpibm6OkpGQt
yOVXB6imoV0l4u+thjLdHzPmO9Hw679B1eP/Ax2PPoju7zyM3oef5ECqiwBV1yM/QeejT1L9
Edq/9yO0PfYkar71AzQ++GMMPvq3GHn0CXQ9+A20PPlNjH3wHxD5XSRA1Ysl+QxapgeR01zN
mUiYrxvCnZ2QERJKgKr9M2/5GbQGLXcWF6OzuRlJwQEIpkG1t7yMaxcuwsLCEtdu2MHJNxCB
pM3nkLZZT8Cqa3QcDW1tyM3PQWJcJCJD/BDs78P9QbzDYuASEgzHIC+EJoehuDqHNLcS1Jdn
ITbYE95ONxDk50qaTjZ6+xpQXpqGUD9bONqcwa0rx3HhFNOOtuLo0d04cuoYTtD83fDwRlha
GmlCXWgmLa0gk5iuy2XctjoFRztL2Lvcxk0HYhw2J2B/6wQcnBkQdIVvMml++ckoKEhDFdXy
zDhkJ0UiOCoIboG+cPX0gZenH/x9gzgQz83PQk4+gYGUSAIHzqSFWcLS8jSOnzqID/d9iANm
ZthzmrS2i1dg4eKJEGL2ld39GGZ+JzIpdwxlju7MaiOXz2NytBOFefGICHJBoLcdgvwdEBLk
Su/ygJevCxzcnGDv5QbPYHo/CYLQ2ATSWp1hcfogzu3bhiPEcN/87Vt454UjOHPCCxm5BBCm
5JiXaeh98jV/JuWa86ve2Vgwh14SAD5nr8HsgwM0lwQ0o3ORVzuA2h7S7AUKiFfUWCZNtbOh
EGnxzjQWNth5yRYv7L+GTQfNcd7OGx7ESJ29QnDtuisuWzjSWEUjP7cK3V39aGqsR0JsGBxv
0licOoLThw/io92HsPOgGQ4SgDt98Tqs7Tw5uKpv7iFmu4yFZRl3eL7j9G/0o9ZAMTeO9vxU
xN64AVcCgw7Xb8M7JBaxhTTnjd2YGJqBdGIGQ7UVSA71gKfHdbh53CIg7YVYov/oYA+E0Ly7
ervDJSAA4SRUU0iZCg3wwvWLJ3Hx+EHs3/Uhdu47gr3URnMrVxSUNECyJIZ8QYDmqkykxnrB
5aY5LMyO48j+o9i35zjOn7sBN5cgxIXHIz85FTWZqagmcJHkHwg7Eji3bQORkdGAyRGJbutN
bQSoFAxQ0fPnB1GZE43rF/Zj27svYvfeLTh01gwnbexwLSAGrvF5iM2uQEPzCBYETFhrIZun
uSJ+Ul4UQkLdEY5u9jh3lQSexRVYO7nBOzAQnu5BcLwegtvmQfC5GYTC5ALiA91oqqlBTEgg
3G1vIsbTF2VJuSQ0x9BQ143k3DL4xcTDk5SEIG9npHo5IsvfDamRkQhhICgxFRXtPRDIlAQ2
VlFZUgh/x9uwv3yB3nUZbs63ERjkg4T4KOSlx6IyPRqVqVFICiGlw90Bvs6OCGPjHxQGVxcv
WFs54No1B1pT0bQWqwiED6C9qQ3ZqakI9vaA681ruGllCTvq01WbW7C5do7m4DLcSTF2tXdG
QGg0UgryUNVehgUpAauRPiQSXdy2cIH5aRtcumIFdx83hPl4w9/eAS7Xr8PRyhquto5wd3CH
m6M7HO1d4OcdhMCAUPj6BNJ8usOPlNG8rHQMEl8Rz80SKI1HgKMtLhw7whXKPbv24qOd+7Dv
0GmcumCFq9ZO8AmIRFl5DfqJDzZWVCKcwJGD5UXcJD7l5uBF/YlAqKsHHC9dxHXiXy43bRAV
HY/UvGKk5BcjLCERvvTeWwSm9+w8gI2vbMfWfTa45pKB/Nop9E8poFDp1zLxevVyN2ZHStFa
n0qgMBYBROee/rHIKWzBtFAKdu5mZWkU44Pl6K6LQ34i8RN7K1y+eAEnzM7h8JnLOHnVAZfs
GU/OQ0RaI8ob+jEwNkY8YJzodQJayTA0871oKkqFj+MtHDvCwNRFWDn7ISAhF2VNfZiaX+U+
Y/LlBbQRuI4PDEAEKaLxMenIym1AVcMAxsZnuCy5l+A2lT9/QLV7905unfqP//xX/Msv/lHn
Q8Xqt7/9be6czrb/mA8Vc0r/qgHVCrO4rBBxthVBFe+ChfPb0ffUT9Hz4wcx9oOHMfrdR9H7
4KPoefBxdH77cbQ/9BjavvMoWh/+rq5+9zF0P/Jz9D/8D5h4jNX/hYHv/BW6/vYhzHz0e0hD
bKBdHMSilBj/1AiyGquRlJlIWrkzQlxvc9+Z3o7WTwVUxvvaxtrDAjFv5ofT01qP/PQUvpV4
k5ib2ekL3PR70uwSnJivVnQiafWZ8AsKJuZHAvvCKVy6fAaW1ldh5eCG2z6hcCBA5RzuR4s3
EgXl6SjKj0NihDtsLh7BqX3v4/ypPQgNdkFuThQC/egdR7dg69u/xeaNv8LG5/4RLz33C2x8
lbSsV1/EM69vwvu0wC0dHZGYnYz4hCASEiSIdr2CPR+8gNMnduKy9WVcuWkBW5vDsLXeTwCA
hKDVGRyyPovjNmeJoZ+F2/Vz8LI+B9srZjh77TzO37SGs5s3IkJjkBifhJTkRCSnxCE0whc3
bplj3/4P8Pabv8drpO29sukFPP/aC/jd66/jP1/bhF+/9S7ePHQcl0hYROWXoLJnAN2Tk5Br
pJDIhJBIBFhYHEUdgUkXx8s4cWgLDu5+G463LyE81I00/GD4kuC/4XADFiRMTllcwK5jx7Dv
uBnMzlzggMr88E4cfncrAap38N6rZ3HxQjhyisYwvajFilyLeZFozclapne4535bzI9tdgFj
ORWIsXTCzYOX4H47kBh6Pcq7ptE2KcaCWOdzoyAhMlhfiKwYR7i6XcOWk1Z4eocFAarLuOwW
ggDSgu1dA3Hi+FXs3HESx49YwtczArkE1mIjI2B+7iTef/0lvP7cU3jthefx299txG9eeBPP
/OEdvPDa+3jvwyOwsHJEXEoBGlsHSACIIZHffXJw7Yf5MkmEGCzLRtrt2/C3uEaC2RuRyTnI
qG9Hdc8Ihtv6IWxtQ1VsKGzP7cPhQ+/i3KUj8HBxRUpUNCL8CKTesMAxAr77SJicu3YTVjft
cN3iHC4c2Q07otNzx4kGz1ripIUdrtp6E6Cqx+LULCa6m1CUEwIft4tEj1vx0Qdv4vWXXsdz
v30VG1/eig93HMM1cxsEuXujMD4a1RlEMyTcGKCyvRmAlJQ6TE/I7wZTaoOFagXqpWFU50TC
6vwebNv8Anbteh+7jx7BThJcR266wcI7HC6hscgqqsXooBirAiUPl9JRk4a4CBvY2p7AAVoH
b27dj827T8D8ljOBzWA42LvSWriK7S8fw8ntZ+F/2w/FWfnIzUiFm50Nzh7YC/Pd+2F72gLh
bhHwcA2DjUsAzB1cYElrwNbqEnzMT8Hf/DQHIhcuWuK8tR3CM3PROyPE8PQsgcxoXD5yAB++
+gK9aytuXr8EX38XhIZ6I9TbHkG3LsHb8hSszxzAuWN7YWNxnpSIIKQmpMDdzQ8njl3Clg/2
4/gxc3h6hiI7oxAp8clwtrPDJbNjuHB8Hy6eIWXq8jWcM7eE7XUzeNhdgK35BZgdPobjNEaX
7W0RnxeJoZkWdDbVwJVA2sF3zbDjzeM4fPw8PH19kOgXAOdzF3Fy6w4cfX87jm3fiyMfHsDZ
Q2ZEA9YI8AhGmH84nG454djeQziyazdcCbznxsfR3GTC8fI57Nu8CS/8+7/i+V//Bi//YSP+
sPFNvPzGFry1ZS/e33EI5y4TQI0n5ay0AnGhYTA/dhj7330dh7ZthbWlHXxcAvlWsB3169zu
92FxYj/xExvcIjnhHk5zTILL24dAnpM9jctpvP7Wbmw7ZA9rryJUdKxictlwYpKUXdE4ZIIW
jHRmo6wwBNk5cYiMjydFIRelpBxNzyv14SpWAcU0VpcGMDvWgu7GCqKBVAR6uZAycBrb9uzH
Gx8dx3tH7LDvchCco0tRPzAFKdtRWR2GYqwKSz0lyCa+ZG9vh+PnLWBB4DAyvxaNYyJMS3Wn
q7nfmGgeo41VKIqNQCb1J43kQWpiPvJyqzE4MMr9Ek1Bh7/ecagefuTb+MYDhKV+8YtfcOvU
r371Kzz99NMkDF/jgIpt+TFn1K8cUMmoduZDHeeA+fNb0Pv0T9D142+h73vfQudfPoDBRx5D
/6PfR8/3HkPPYw+j+/vfQffjD6LriQfp94fR/NePoflbT6D9r7+P9ge/g4aHNqDx776NiX0v
QxbtAO3CEJbF82gZH0V2XQ2S0hMQ6E8anIcdkqID0dX56YDKEI/LOD4V0yoEghmMjRIDb23g
/iZJcbHwcHYnRncJB/ccxq4P9+E8aTuMgXt5+5O2ZoPdB/bg/Q/fxx5iogwUXLjpCFv/MPiQ
FhaalYxcAhQN7aUoL0lEfIgTrprtwaEdm3D6yDaEBjkiPy8KQQG3cOLgu9j82q/w4dtP44M3
f42PtmzEngNbsGXvTryxaxcOWlyGU2gwSqpLUJAXjzCvK7A8vhnnjrwLZwcL0voiEJsRhYQY
e8RH2yAk2B62njY45WCJ4zfOEaAygyeBKRfzY7A4SVrn0d0kyE7AyoaEgX8EkuOSkJaajKLi
bMQnk5C0s8Seve/hjU3PYNPrv8Mb776K195/A+9QWzYRE2Zg6jDd65GYhoLOXvTMrxDTkUDB
/ME07BSPCFLZDBpq83D71nns3/U6dm3fCPMLB2i+HJCQGAwfEkg29ta4evs6H7v3dlObSBO2
srGDn6stPKwtcGHPQWzb+BEOfGgLF9dS1DWv8m0+xnAlBgdcI0DFHYPZScuZRUznViH1uhec
j12Hh30Q4tOrUNErQOeMFIurzIdFA+nkKHrKMpAYcB22N85ir7kDXjtOTPeqB0LSy1DS0INY
Yt7XrrriyEFzHNh9Dp6uxNgz8hEZGoJzJw5hMwnZd19+HjvefQcfbD+AzTuO4u3tB7H5w8PY
R4LU3j0ERRUtGJsVQbAgh1R5x5F5LYyB/mi6Zmkc3YUpSLCxge/5y/B29EREUjZSa1pQ2dGP
sdZuCOsbUBjohnM0pu8QCN97eDucbtsjNSoOcYGeHCDsP3ICu0+cx8nLN3DZ6gZsLC/g1qUT
VE9xQHXm4hWcuWoPi1ueyMgpxVBXB+qKUhDgQ2N+5n1s2fw7vPXK77Dx9y/h2ac24sUX3sP7
7x2kMTCD8017ZEVHoDozFakkUG5fs9cBqrR6zE7rnaY1Rk74Kp2FignHmtwo3Lx0AHu3vYZj
h3fh+JkzOHzxKs7a+8ImKB7OEZFIKylHX/885iZEmOzrQENpPKKCr+OGzSmYnbuCnQR2j190
4EK1qqEB6UlpuGHmhL2vHYfFviuI9IhAU2UdmuuqSYkJhO2ls7i67zCu7j+FvW/txcG9Z3H6
qgOsPPzgERiAUD83JDlcR9wNS9w2t8BREvKHzlnALzEVfXNL/FRYLikbV48dwP63X4XNmaOI
DvdBSVkmKsqykJkQiBiHK/CxOIrjH76FPdvexKVTRxEVGoT8rAL4+YbiyKHz2PTaduzedQqO
Dn5II5AcGxGDW1ZWOH/yMK6dPwb7W1fgERAEf1rnmSkBKM8ORUKgF6ypTaeJFixu30Jsfjgm
F7sx0NkMj+tuOPTORezeTAoIzWVmVg46SsoQc9sBV3YfwMWd+2Fx4CQsjpyFs5UTksOTUZJF
QKK0DunRqbh2xhxn9x+CL4G6/OgYFBFItj51GNteeR7P/Mv/T4rds9j6wQ5s/2g/tu48io8O
nMH2vadw9YYrMrKL0FDXyLckGaA6svVtDlzD/aNQkFGMhuwMpPk7wpcBQ9uL8PB2gmOAN7yj
o+AVFoSwcH8EB3ji8gULfLDtMPae8YBTRC1yG2cwJNTwgzEaGSkYK9PQEkhaGqtGe2M65xue
Qf7wCIpBenEjxmYkUKt1fnpKsQDLi+OYGu9Db0s9yghQB7sxwHqI8+mtB0/hwBU/7LeOxO3o
SlQPzEOwNIfRrgo0pXihMJR4oSeNHa29E5Y2sAuIQwEpYLO0PkVM8Er1DviSFSx0NqExIxGl
CbHIjU1AUlQqUhJz0N83zAW0CVB9PQHV0aOH8fY7r3ML1f/3jz/Hhurqap4OhgXbZAmSWRwq
BqgyMzM5GLrfwvywWB495pjHIqWz7RkWsbywsJA7HGtlw9COFEOT4QzBFQJUr/wfNP3vv0T9
YxvQ/PAD6Hjsr9H2fVb/Cu2PfRMd39+wVtvZ5w//GrWP/gXqvv8/0fTTB1H3f/4S5b9+GJ1H
X8R05A1o50cIEIkxKpxHY3cvCopzEBzsDlf3GwgI9kBPbwcHTMbhEdYncjakpDH+jp1KEQpn
UV9XhbpaWmzlJcjNzEB4YChuXLmBwwSoPnhnC47sJ0By6QpsrG1x7pI59h3ej10Hd+HAqUM4
dvEsMT1XOIZEIzg9A3HUtvLWMnQPNaCpPgeZcT64cno3Tux5BxfpMzzEGYUFMYiJcoWV+UEc
3LkRp/e/CbMjm3GRgNfFyydw7tplXLK3hysxrsSSIvSN9qGdnpkZ6wrnq/thf+0IkuL9UNfR
gJ7xTkyNVWKgJxNVlamIzgiHXaQXLD1v4KbNOThaHMet03tx/shH2HF4J3acPIrLV28i0C8c
2WlZKC8rwfBID6rrCxEYSFr/qT3YQYJv5653cOjEPhw9fwJHL13CYcsrMLN3gWNMMjIa29Aq
WMCoRIkZmZQflzYca5dIp9FYl88B396PXsPmN57G9asn4O56HeERXtwS5ujhQH28iMNnT2H/
6dMwv+6I245eJEC9uTBxvExga/d5WJwNQkBgPTFQZpnSx+FaO65951i7mp9gZBaqJYxlVSKB
gJHjMSsCAb4IjiGttnsSbVPLmBcz270aGuE0JpvLUJ7sjbAAJ1y47Y/Dt2jcgjNQ0TVGwkuO
hqY++HhG4dzp6zh9/AqC/GJIWy5HenISbl0jGtj+Lna+swm7trwPs/NWOHbOBscvWOOStTPc
/WOQXdyAvpE5zpANYQSNI3Jp9MfDmUauJIHQW5qJFFq/7qfO8y0//6gEJJTXcp81Yd8IZkmR
KAhwxcW9b2HzO8/iKM2pv28AshMzEe7pBjurKzhy4gL2nrTEOStH2Lt4wdfVCf6ONvR/ep4H
AXsbWxy5cA0Wti6IjEtEUTaB/9QgXLywFdt3PIPXXvpXvPHyM3hj46t46YU38Pqmj/DRhydx
4uh52FnfIvAWgfLMNMQGBhOAs4OzYxgSk6swv6TFioT6qDaKVaaRQ70qoL6NIodo9bblMRzY
8RaOHtiFK1etcNPZB7f94+EZn4Wo4lzkN9Wgs38ag/0z6KivQnFWJJKJ3iPDvWHvEAQn91RE
JVaTojLOc3t2NzUj1D4EJ949jRvHbyAnOhvTQ+NYmJ3CYEcjCpNi4XbhMg5s+gDP//Pz+O2v
X8EH+0nQRyeiorEBNaW5KA/1Ro67PdxJSTptdoEDKm9SMrpn5zmgKs5Mh+25k7i0/yNE0HVt
TeWYEQxieLAVZblxSPG4iTBSXC4c3Iaje7fgyrlTiAgOILCXAU+PAJw4Zo5tWw/D7LQVXF2C
aM1mIJ4AsLsj0bu1JYI97YmeopBfUYrqpipMjlZBNN2Ijqp8BHl54AqN+RXH2xxQdQxVYbi7
AzGeMTi55TqBIifEJhRjdGwaq6Pj6MrJQ5yjGzwsrOB93R7RXiF8G7S5vBmCESGmBiZRnV8J
LzsXWJmdgwcBiNRAAn8xEfCwMsfJj97Hey+/iJ0fvIeTx81wjgCvJdEyUwwYPTNra3NbL/V9
hPunuVy/Civif/aW5ijNK8No3yjkkwMYrc9CabwHkiOcEEp8yC3MB75xEUjITUNldQEKclNw
++YNbN95BLvNHGAbXITCtkkMzckhUxnCYLBQMARQxKOYHCbAlRcHJx9nWDm4IDarGCNTYn6i
VrWqgnJFxAP/dre3oa6ElFji3zF+rrA4cwA7dr6Pd/fsxW5zJ5z3SEFoQTcaRleIn0yhrYrA
rYM5rux5l1sJbzg6IzAhHZm1HWiaXMU0tWXVEGeM6Fo5O4mx+ko0pCehKJbWd0w80hMykEqK
z8TEFBfQxr66Bt9dkw/Vnz+g8vBwQ2CQL1LTElFeUYwNf/jDH/D888/j2Wef5fXVV1/9Uk/5
sYTILI8fA24sOrqrqyu8vb25j9bc7BgR/xS0C03QtsRDGW2NhcvbMLrtt+jb+Ev0PP/PaP31
3/Pa8Zufoeupv0Xvb3+MvmeepPpD9Pzux+h6/m9R8/SPUfP8z9Dy9i/Quv3f0Hz8OYx6n4K4
Og7qxQksr4gxPD6H2qY2WmCZCAhyh6PnTfiEe6Kjq3Ut9YyBgA3EbAyomCO68aAyR8J54Rya
6+tQS0ytKCcHKXEJCAkIhLuTG2ng9rC2ugkPdx/E0ff5BUXIzM1BdHwc/EMC4ObjgdvublxA
2fuGwZMWWlhWIoobSzA40YHRoUa01mQjNdIboZ63EBXihurKLAwT2GprLkBuWjBiQx0Q5m0N
PzdLeDpfhYvbLdh7ucA1NATR+QUoa2vD9PIsZmb70d2QhfwET+Qk+qK1qRjjgnFi/FNQSPoh
WmjB8GgDajuqkNpQiLjSVGRlRKMoKRQVqeFICPOCrcdtmJPGa0vAKNAvFEkJJFBzstDcUod6
EhZFJemIiw9EoD+zQN6CnYM1LEiDt3Fzw3UvEmzh0YgoLEP10ATGZWos6eP8qHmQSNEaqBLO
9KK8JBmRwc7w87Chd9nxrc4wakNQKAn6EF8CDCGISk1ESn4hUnIqkV9Yi5b6anTWVaAgMQ0h
HgQ6w2pQUS7E9BwtgFWtcahDfjTf4EulYicLme/F0iqW6rpRF5KBDI9YZCWWoKK+n4OpgQUZ
CX1wQKVdnIdosA39tZmoKCKAkFcH3/Q6JJe1YlAoBgv8wJyISwvrERtJQjA6C1VlLfzkVUdL
M/IykxER6Alvh5uwv3EDt+w9cN3BBzed/OHqG4GYlELUMP+LOdkngikDoNKqRFgaaEd3ejrK
w2OQn5qLsvoW1A1PoHtyBuJJAWgBYrq2GJlhrnBytoSTlx38fAlwegYSbTEfPVfcdvKFC2nY
sWmlKC4nQF9VjpbyPFSREMtLT4RfcBisnDzg7BeEjLw8NFUXor48BT4+V2B59SBOHd9GAPIA
Lp05g7OnL/ITkuwkX1hIPLJSs9FJ62S8pwuN5RVIiU1FehrzfRrDspiEj1wfe3ptW1MJNQsr
Ip7GWFcVchMD4e1oBU8nW/h6+8HdO4zamgCPqBR4JIUjriQD1a196O0dR19nG9obS9Fcm4uG
2gpa783ILRhEbeMMJmekPDzHyvQk6jMqEHU7FBkBaeir7YWc5l8lFUMkmMRoewsqE0iI3vaA
+WELnDllBTvPUOQ3tmJUQIB6qAtjFXkYLEhHcSopIjGJCE5IQ2FzO6Ylch42Y6CjDfmxkUjy
90B9QSZXHhWqZeI1sxjraUB3SRqaaI0lBDjDze4aHG2uIpD4InPqZhYqV+cADqQiwlNJ+axF
Z1s/Ouj5JTT2uWkJqC3OQk9HPYanhjE6OwCpqAda+RDmRztRVVSAlMwcpJcVommwDkICFyzo
a2NBE2LcC5AUXEOgfxzCBVpzIikWOrrRmJ2H8qR0VGYUoLGkljvqjw9MQL6sgnxFgbH+MRSk
5xAvCEdRWhq6a2sw2taM2pxUxHi7wOGKBeyvW8PR3gk3CXjddPSGi084wmIykFVYjf6hSSwv
rmC0p5fGLIlAbAgH2P1d1PZlFkZmnkBVI0aa09HVkIq65nwUNRSjorMeLYMdGJvoRmd7NcJC
A3HO/BrO3vCFe2wRyrpGMTQv5nHzNDwWmoaHbdHKF7A404OKykwERvoR/3JDKM1RRV0XujrH
MdQ1jom+MYwNjKC6lJSdmCTEBoUhwN0JdjctYetkA7fQIMTk1yK9dgj1IyIQFsOyaAXDnQ3I
jwiA13ULAsH+SMkiZYrmpmtinm/1ifRhJXj8PbEEUz3dqEpPRrK/HxIJiLJxbGnswfDwLAG6
pbXwRMbC2wSmvj5hE957/2089/xv8Zun/l3nQ/XAAw/gkUce4XGoGLhigIrl0mM33m9hwGNy
cpIDKmahMmz5sUjsI2ODUHBBOs+ZgXa8CtqaeCDJHaIAW8y5W0FAAkDoYokFt0tY8TwPic9Z
yP3PQRF0AbKQixCHXsKU/1mMB1+GIOk2FnOcsVjhB9VQHnceFK0u8YCYvSMC1Na2Ij87C6Fh
fnALckEIAYbmjpa7+mkAUMYaw72sVsy/TLS4RIKiAQ0lZchPIeEZSaCBGE40gaPkdGIkBQWo
I+2HxZ9iR66XJGLMCgUYGOhDXW01MfsCuPqEELCLhS/dE5Iai7yafAxMdEJITHJ6uA0zQx3o
balGLy3i+flREqjLUMoFEM31YXmmmzRyYoQFcUhPJIAVG4yohBgk0NwVNjSjeXgYK0oZj8Uj
Wx6GYLgeM8NNWF2e5DGvVpVsq01IdRpSxSxmRTMYWJkiADGG6elBLE72QzzVj4H2OmQWZCAg
Ohy+gSH8FFJSgi7nYn1jDXoHOjE1M0j39GNspANtbex0VQYi4iMQnpyM0JR0ROUWI7epHR3T
8xCwCNlrwTkVvH3A6hqoEi/T+0fbMdrfiPycWKSnRuj6FhuCRGJMJQSeesZGeTwqwZIGS4tq
HvkbshXMjTMLxDB6O+h3IRH/ihZSuVGqGT2g4kCFpZDhoRqUuijf4/NYaBrERAON/egi3+YT
yLSYU7II9VpdrCLmQLo4A4VgEPOzIxhZUKJpXIKu6WUeCFWtD5IpnFwkZj1DnwR45mUQr0ix
sryI5YVpzEz0o6u5FsX5eQiNSCSGn8IFT0J6IQrLm9HVNwnhoowf1783kNLeiefD2i+eJ9A0
DmnfMO+/YFGEaQJ/iyxYJSFBLTtFRNesjHWio7MSZXXFpFFlIcCXxjMiGqnxycjOr0ZN6wiG
pkRYFCugWF3hcdKWCQiMDXajjDlsp2ciJS8fje3NmBjpxPhgIyqrSNPOCEVcDGlpiWEEnpKQ
SWshP78SNSS8BgamMEFtkpJixSKmr8wS/XcOoL9PgLkFNeRKXXwy4+j3uuiWUh7YU748gaGO
GgIJBF5y0pBN6yoqKgkBYSkIIGDmnRyG2OI0VLV2oneQ3jVGisLUKBaEE1yAzwlYCAgtrR1d
jC9d1HkZJKMCjNX1YbZjEnKhzCjWl5xHoWeO/GNNvShMLUZOVjkqm3swKZLwALgspIeWWden
GYAZxejYFA8LMkl8RqSPt8ZCciyNDWO6p50A3CgPCGoIjArZAjRzI1DQ2hqndV1JgCslKgKJ
0dHcTyolOROF+VVobOxFf/80hMJVFr2Ex3VanJ3F/2XvPcAjuaq87wGMje1xmBkHjLGBhdcL
+5IMLLCwrAPYwIKxsbHBHoxzwuOAsz2Ok3POQZoojWY0GoVRjqOsVlarlXPqVner1TlW/eu7
51ZVd7VmHD48u6/9PHX03EdSd3V19a3qur97zrn/M8n267GM8AoN5OENSi7+HeYt6OCetlGL
DbaAB9OkJC7JWl/OEQ/GjAFM9tNyffYd9MshVrD7mGuU9dfYBLw2dh0zQPFO++Aj8UnFs0vi
s8ODI+jsaIdlbJjr2FGuW3jKjBFjE+rLStjnKEJ+bgGOsUnN4ZRMfj2XVjShgcGule2Xf/d8
flgH+zHZY+Jg66frk1/LtNpzGOJ0O/ucXfAEx2D2jMMRccHN7g20cMXlGGf3zQocOsImrsfz
kFndisbBYYw4XXKeoV/RFiOoYve3iMeCmtoCHEk7gE27d3BdKArHZ5+sRO0pdl9u68doZzcM
JWXIPJLB7t9pDI6PIelEGvKrTqF1qB8WXwR2tl+PGnZn1860eQzGmnoGltlob27gaR8EWkEh
/jomTS3bmA1tdQ3ISDqKvVt24lBiEkpL6zDA7gs+kuPwx6uj64npny6guvvuu/D967+NCy48
V9ah+uY3v4nrrrsO9JvyqUiXikJ+FJI7G8WRKTRGOVQU8qNixEuXLuUSDaR4XM1mrT1sxjdk
G+WKyKExI8Ld1fDW52OSzeBG849joigdlpI0OE6lwl15FP66Iwg1HkWo9ThCxhOItGViypCG
8boMTLbmw9pRiImOIjYg1sJqH0D3+DjaBs2orDWyL1IB147atWsT1u7agL3HD0aBSptDpcoj
zHTBap8nwCIRO3v/EMbaO9FhIB0VWpZeIy8tHmUzoCk7nOFQVFWY1wajcTkUwrTNygaqIb48
uIbNfMsaDChtqEBTTwvGp9iM0jMJ19QYF7j0u6bgcU9pSjGQBrqLq/zSLH6CzUpbG0+hoa4M
DU11aOwwoX1knA32bEYsqKUmCDjM7IRMKqrDbOZJAqP8Zkw3XRe7bXngZPv3kLAo5LI6Uojd
zqbG0d3Thur6KnaDLGezvmo01LegrbUDg+xz2l02rngvih6IYXZj8dm5jEJnXxdqWltQ2WZE
TUcvjGxgHXWzGxLraj/vE1m1WYSfC11qoQpsxhrymDHQ0wwTG1Dr6ys4vBm7OzE4yWZ27Mbs
DCnCo6JGeZnd1DzsDbxOuUhgSN1GEuOAihSoSXFehAJUtPDAy9o0+98lRMvxBBTwEyQ1YTos
J00LXj440/OT7D3sAVlolL9HJMxDCqIvtnotEhF5qRe1bEbA7cDgQB9f3l5tMKGODd7Nxj42
k5/AuIUNIu4wQuEzQZSm5hoXSAzIpV08SgsI/HV0hfijoooRedbOBmBK/qfSGt19w6ipZgNh
VR0bFEwYGLbC6hR4eSMuC0neLxJzZf1DS+5J26yluwvGvl6Y7Rb43JOsj8dhd4xieKQH/T2t
XN9sYrgX42zAn7Q62IAtcpFLLl7IVb1ZC4bgcZDoK/WHdJqYZgyqZDmNABsUHeZ+TAyaMNLf
iW5TBxtUm1BW2cw9cQVNFahm10j3mAVmm5exAYMBt4ervXORR1LdZv0RCavXiRLiZYOdZGOf
zy3KSu+Mc3hZF1E5ThpAXSGYh20YHZ3i8B5QyzOROjm7xum7QeKatAqT+tqnCl6q4qR0nVBp
JFL6j6rHi/L3WPRy76IwPQkrm1j2s3tGZ2sr1/Gi71V/3xiXzvD5RDnnJyr0Kgt6SkGvLNLL
FcbZ91mclCem7LtE9KWGtEP8+bD8WvLUOuXQGIlv+IKK0Kafbe/zxQms0vUa5oLDMbV8t98H
BwOHgBCU+0GS+1Jg9ye3xQz7xARGB0b4itb29j52jY1icGSSe2xVZXDq27Bzmq8QFdi+pKiI
LZUlssgr6Ngkj30JWX+6udhwRFHpJ506u82Mrp5uGNn7DLD726DDxlcL88lHUAUqpZ/Y+enp
bEJVdQlOZGXi4JE0JO5n0HQ4G6VFjeg3DcFnNsPc3Y3O5h4Y24a44n5z3wj6rFZMse9WVBRZ
iMiK8exeEWHvZ5/0YmTQyiZVZi4Yqy2RRZpb7ikGr4PjaKlvQ3lxJdKPn+RSGHls4tLSwaDf
jdh95X1gSgeqTz5Q3X//fNz665tx/Q++I6/yI7DZunUr15564okn8NBDD/G/CwsLeSjs4xrt
Y3BwkAPV/v37OUy9++672L59OzKzchnotKO61oSmGjYzr2OAVV+LLjZwG+tq0FJbzcNpdZVl
aKoqYqRfAFNjHrvx5KPTVIIeUznGWuowyGbPpkoDTNX1MLG/myvL2euKUVFVjryKOmQV1yCJ
zZj27ErE7m0MptYtw5LNa7A1aR/ae7r4Mc4sLzNz1jBT4JN7segGTIOFj23rJWVnP0K0NJ9K
RmhKpKhAFZYQ+wKxG4uf3fipzAspGLvYbNLudzAAc/EaYWp5BbXkBGYMNDJUyWUnqJ6X12mG
z2VBMODhaupuUfYCRWP5vG6VT0725VBGpTSC8qApkmovm5VLATYgRBR9KClWIxCyGGnQRwrp
Dn5jpUGbbh/+sMg9Pbz0RdjHhT3V8hAhNtv3MHh0BMOYYv3kEjQlKxRPhKSUwaCZX4hU1iNy
bTJJ9PGZvMQ1dNzw+9iNPOSP61dPOAYbiNZJlMs5IDwDtJTaedEviKiWJVGKp/ISQEJMmXxG
3cDogCZIMTiAfBxurjEWQliUy/NIQVmBXs7pUOq0Kd4wtY4jnXi32wkvAyBS0KYZNsEHQYZ4
xlIeKkQpIKU0UiaXArRcPCI3Bna8jIwgl/uJvp6dM8E3LZ8jthN2ycI+zQYGKxsMnezcUtkb
NbxI9QV5vbGAomYf4SVNSMDV5fNyEKXjJ5VuKGr6Ii8TxK7nkJOfL3oPVW2cgIMranOPmijD
izijT2f0uXqtkwp4KORSataFubK7i8JUzgAc/hAmGJiSJ4ZqXQaUcj8cnmb0XwxKlSLNXOFd
ipZ9EchToCp7q1ARlPdFg3VQVIslh/hnpEoHHALYdyNaflczceLXIVfrjsjX2mk1LSPyhCXg
k2t5+uVSUCF2H3ExeHO7/Lz0lCCqRZTjFfO51zEo9wnpTIXDDkWDKRIHqEEhElvEEJa9OFRi
B1KsgHSIXT/UtDX2CP5JhNgf9CnnkqYeAq9PGNCUfuJlofw+/jnU4ydvLAEUeQSp7BeptQth
zfGzbUkMVPT6oueISkyF/TZ2Edr5JE9k9zeqKkDwRkrz6sIh+k0VE7xh8syx8UWU71l8wYYQ
O58yFAcgsGvDMWVDd9cAG4OacPxECW/lla0YYJMKyc/6jIFdyMO+f+x76GLHaQtJXBTZFVGq
ItJXlsplqcLDSgkhqoLAQVFUrmtRLttDqvdUr5JCimWF5SjMr0RhcR0qDR3oGJhkMBWJeuiF
D4ApHag++UC1fv1arFq9DOvWr+K5VLNId+qWW27hoT4SNqP/X375ZQ5U6uq2j2MUHx4fH0cr
aTDl5XEvFSWl79u3Dyez8lFVbmQE34ryghpUFLHZZmUVm603cDXs6vZOLlBZamhgF2Mtqusr
UdN4CjXNZahsq+Cq4i2GJhhrjGiu7UFLXS/aakxorWlGfU0tKqurkFl8imuZJB09jkMH9yM1
eT8OH0pE4rEUnCgtwdDYeLSUhjbMNxOozrgKg39pxZgooSbpme4RdDPjN4MZBX3VXBFedDgi
1+eiGzW57+UWiQ3+ys1R+3q5zhkN3M444JFVxj+k9AzUm4IyoxLkgBK955lKz0Rfp4AXwQCF
PQRNeQ51Oyo9Q94MNfOHSspo65rFlYiAov+keo7oJk5eFF5+JhjfpHB0hq8FKr8QE4SMzciV
Pop6roKKRy7A6yTGfyZfVFSUyvlQbT21IjxBMUFEfFFn7dJ+ebANaUKXpM5NNQXJ88AHvQjn
Ds05DHOZCLk4ckSuQh9VpT9TgVkV4FSIUqCP/5YBBZHY8fByJPyaisGJujKQD5pBuc4jFC+K
J6wZ4D/oOp9xc4lqsomypyMmNRpUBnWX4jkR+fUREmVRUrn0iBjtD7lGpOY7JMZf69S8dE2p
9dsUKBYRKwsT971Sw6LaAtOSxjspxbwIkjBTTBTR10BT+DvumqX35vX8YpMZOo8cqARtAXT1
9bInZ+bjcaVnBE3THDMvBC5qwCfqmVRhQfFOqnX5lILHkuZ6JcCICsNq7muh6OtEpci7BkLp
MVGZzHGvUHzRdvW+4teWnqH7J90vI2JsUiKcoZ4fNFClXAcq7JI3LEJ1EqUA/07yskERv+wp
I7YPyccoKiWd6Hsq8HtmJHo/gqRZKRr1JMu1D/1OYKjfgZbmYTS3DvGcWhLd5CW7KJ4aUSBJ
ye30K4XN4ydR4ej9NVp8XlsmirbhnjG2jcsLj8WBXtMgOjpG5EUTY9McptxizPOND/mO6fbJ
Bqp//OM5PPzI33DnXX/A737/a8w699xzceGFF+LKK6/kBZKplt8LL7yA/Pz8s+Kh4jMKBmYk
wUDlWkg+gcKJZWVlaGpoRWt1B+pLmlGZfwqnCovZzKEUFU21ONXehlOmdpQxsKpsbkVtQz0M
9dVoqCtHXd0pVLLfFXVVqKquRX29EY3NA2hu6EeboRPt9S0wNhnQyPZT3VqPqrZ6lNWUooa1
jrY6dBpb0NoziFGHF3an54wQdSbtqTM1qoVFgxXdWHjx4bBc1JZc6GGvlze5YGxssAhpZieU
U0B5OVTXis3HuXeKiiOTq11QBgcB2oFb8exQDTu/nMxI+Vw0E+MDGpWCoJmlstIkLmQFtZ6f
kuosiqcXR4YUDXdxaImoRVll74scGvTzVXMC91DFZuQcMIVYLTBKACZvBw2o1LingmaavJq9
jxdpDocCMXBUwyRqcWQxHAUv6t8Q61vyFPiVG15QBYlI7HhVgJQHTX8sNMqOm2okRmbUNZRv
3n4OOlTPMEA5XTQjZ8/TDH0m5PAQkiCHkcJhdUCP8MR6iFR8mMIu0/J7U5ggIiiAKvdvUApE
oVmYqSsVJx2gwIYKUhyiQjJI8d8hed/aUCAfzGLnVNCAdQixmzcNZT4KjYoxT5Bc9kfxjCpg
rTZ+HWomDLwMinL+KQcq6m3i1980DyGrBW9Dqoiqdh9q+Iv6J6h418JidFIiaL4jHnZ9UAlc
AlY6RwQpVL/NL8leOK2HSw2PCtAAanQVqVpYdwbQQRncNUWEtddSUIrJa3CYghq29XPPkDyg
q4O88n1VZToQifNaqfAZ0X4n1fNN+XkhpWCxehPXao9pCxnP9MQgfltIp8MM1PPMj9klw78U
jIdLFQro+xlWPDJCOPZ9VMCFrqXo90yKiczKNfSgKbQsxP8vSmeaNvDvU1icMYmTxHgPo6AA
VSR2HyNvqwp6Wp02msipEw6a53BPcYD1uZPdDRzsmvJpiquzey6fzJIXMiinCIja49SCt+Lt
htoP6n1InRAJalK8cj37Rf7etF+nX/Z+BaITgCCvUSjXMj09R1cvPfPpAKrbbvsdD/VddPH5
cg7VvHnzcNVVV/GE9B/96Edch+qVV17h3qSzIZsw8wIhsOrv7+dwZR23wTHEqL3TzAUIu40m
9PR1o3tsCCazGUazBe0TVnSMjaNnaIA914nuLiO6TAyYjEa0Gtt46ZPuwUEMjJrR1zeGPlM/
Bjt6MdxFRTE70N7bDmN/O1q6GtHT38Hr43mmnby+Gl3YVJxWqy+l2sySMx88g5c/m6gOaNqw
EIVklNlYiH3JXQEfA52IZuAX5YEFsVlmdCBTZkm8Oj37MlJYIyyqN5yw7A2KejciiC6yZ1Aj
KFDk4+EoJakaciIzQn4ONdDMiiNqfohyw6a9BaABsYgcHgwJLjYQ+6Izd19YexNUb4SyR4Bg
SRQ12knaQUzxYnlc7tiMmvVfyOeVQ00EhgRdmtwEbZ4NvyGKsRwlQbm5+ZQBnKAy4ncqOWJO
ftxhdfDTeutoiT4DKxWm1JwNRHOulPcWRHm2HJEHAO3gKUphHnIJ+s3sRmqVIS46GKmDI922
gwrUyYMAeS/VsEvcYBN3QxdiYSptI6AShGhOmBjRXHNKn9CNXC1mG9GEFyBpw1PE/1RL0SWH
1iB7JCjY4Q9Hoh4Ske73ghyuCwdFDpP07m6fxkPFc3VUD5UMVD52nGEVRKl0TkTGCgob+n0e
+ftB+kEzgYqgT1Q9USL3LlL/qecwMhNIBHnQVb0y4bBcDFiGHzc7Z052Lfqin1/13HGPXTgU
9eppgYr3HeSwGZUNooUP/Lxydxb7bGGvDN8aMKZBn4oz+wWqoynEhbh5CC4sf5eDmmX1EvWn
189TAHjul/I9IqhXr0NofZja6z4YinlA6VgpdCvEb0ehS5qMCApQsRmcfL0GlUTxiDIxERUo
5yFIr3KNyZ4eqo9IYWCaINH9SF1IoP3uUq3J2DGK0aLJUW+UUo9S1EwEwgpwhGZ6A08LeSsh
PVEzMaTwKxVWZ+eHPMoxb6/Gbypo8qoURX4VauVzF1Fi6TM8eogHVzUPj9IYwsr9lSeeI7ai
T/YSqx5XMQb6iPfSx9I2/PLxK+XMZo6X6mO6fbJ1qH51y4346te+jKu+dDlmrVy5Em+//Tae
fvpprkH1xz/+ka/yy8nJOWseqplQRR4VHmZjF2rIzm6ypB/qZBegF0pOkRyOcLDnrezvSTaD
tTIImAq64Qw44fG44HcF5OajSuhT8IVs/DfllIieCJRJGCIBNlAyiHGzG6Kbva+f52wqmiWC
7LJW4/NnUkP/wM7mOS1SfFNzXTSNL4OV71v8SxzUtIhyc47lx2hybvjzcj6WOsNXZ+HgeVYc
eeR+VvYle3ZU7wWiM+2wMoCo4SP5NUqOizKw8mLFM44jdvMWeK4AbRPmDUpOiRT9fNr2QX32
oX0avSEqTfMaUbPqTZtbIqqr9pRwK2K+Pd7A5RkQAxjN/ukGTJ9L2+KOJ+6YFZhSbpTyewny
OVTeizfxDMce9x4z+0k67T2jbWZ/QFDyNhB3LPGvU44PUvQ8iZr3iPahevxKk6J/q8cnnXZs
6mPa8xDrUxnq5f7Wfs4zXxTRfDAxtu+4cxy9puL7LXouxXjv1OkXoaDkrYWjnwuaY44/x/F9
Fu23uOsp1lenf75Ym3mc79fOdK/40O/HGV+j/Uyxpl4H6vUX7YsZ/RGXpycK8S36uU//Dn7Y
sb3/8cb32cxrKbbPM51X6bRjev++igdQiDOvLeG0Y4lrM95Xa+IMSZP4PtR8D2e8Z/T7JunA
9GkHqsWL38O7773J26LFb2MWJaE/8MADmD9/Pu6++24OVa+99tpZDflp9Z0IpAioOH0LCtiE
Y6Ebbfw9MiMXKMjDJmq4QHXDRhR3/rTsjYCSQxKUYknBiLloI5I2TBDh3qEzxa4/Sgz7jECl
garYQIoZgCS3MF/yLP8dnQ0psygZXEI81CGqq3Q0fSPKmZJKWEwGHAId1UPFcwjIS0OhkdOA
Sr4ZqLPwsAJ78mcSNEnPiCsLog4U2s+AGQNw3AAe7b73vynrpptuuumm26cRqBYufB3PPvd3
PPb4Q3jq74/JOlTnn38+rr76al4kmYQ+VdmEs1HLjyCKoEpOhpRXa9BjcpvhxhZj4QoOFsEY
YEjRVWGKJyludZCy6k1S8pW0oKZAl5zDEsv3kVd3BeMTOc+QHPgh3X3GmfFpK7NUmJDUmbvc
yKMU5mCCGUmykMNIUoC3iApUghaoFK+I4qmQvV/Ke0VXrMn7juZe8dCdnEpBFlZeE4l6ZYT4
2dUMmIJmVidqXhMHju8DSh9lRqmbbrrppptunxaguueeP+GHP/oeLrn0Qnz2c7Mw64ILLsDc
uXPx1a9+Fd/97ne5DhWF/GiV39kAKm1JF/V/PpgzwKLlrwE2uAciiiaQEJCXX/v8iLhCCDvC
CDpCCDiDCHoCCPoDPC+C8lgol4jyc2h1Ny2lDoW9XFcpGAwjQGE9ryQ3ek3Qy/NEgmJIXnEE
OhavLCMgRU6XQ5hRBuD9TF1tpF1xpA1DxLvQw3HhECiep4gCIXEeKB5OCGmAKnQa4KgeIDnp
E0q4S7O0PhzzREW9U+pqJiVt4PQwl6K1JZ4hqVUTNpBbOC409qHXwUcMaeimm2666abbpwGo
7r33z/jJT3+IeZddgs+f+xnMotypxx9/HPfffz/uvPNO3l566SWulK5K4p+NA9LWxKNQos1m
w4TFjGlvAA5SUA664A6SGOA0XO4puOxOTFtdsI1Pw2p2col+q2MaNqeHK59P+iWuYDvlEmB3
+TDpdsHicmBi2ouJqQDMNtYmfZhyODE1bYfDOcXVbD1eP08wFbkek0cWsJyR46XN+/ogi2iW
EAc0YBVd8SEo8KJ4i6IJxopyjTavJy5kCHqcQMoXAyrEh+CicXtBDRGqQKXx8EViXqUYaKlL
xIH3yy/B++QtKD7H2OvicjA+LF8iHqx0j5Vuuummm26fZqB688038OJLz+H5fyzAK6++gFk7
duzg5WAWLlyIxx57jOdSkQ4VFUc+G7X8VEAh6YTJyUleKLm5uRmNjY1obGqBsasXbT196Ojv
QOdgOzoGjGjvNcLY2YG2jm60tHShua0Tze2daGSPNbHXN/QOoL5vFA39ZrT0jKGlewTN3b1o
6OpCXWcPatp7UNvWh9rWHjSautDUZkRDYzNX925tbkenqQODg50Yo9Iq3uk4gJpZt++DgQpc
msCjWT4bB1QRhVfigEqIJu/KQKIJFar5V2cCKnWlV0SIAhUXOVBXOEGTpKtZnRKXeBtRlhCH
NKvHNEnb6j7ikpjPBFNxQDUzITqWMD0zafa07XSg0k033XTT7VMKVGvXrsbSZe/xhPTlKxbL
OlSzZ8/mOlTf+MY38LOf/QwLFixAQUHBWVm26fV6+QGQWnpFRQWOHDmChIQEXnomM/Mk8nJL
kZdXhryiQuSX5SGvIhs55TnIKstFemkBTpaVIevUKWSVlyKzohhZFWXIqCxHRkUV+9+A3MpG
5JXXI/dUBbLZduklpUgrKkZqYRlS89nf+cU4mpHL63/tT0jGoYQjOJ50HDmZGSgsyIHFMsGP
ceZyVTXs92FARUujvawFlNVv0ZVykfgFNfx/bXL3jPpssfwryMuBOUjRcv6Q4qEKyLpJfCkz
5OChVrNIVPKXlFAolGXk0RUx9Hm0QMVXAYbkfSKgQFxs5Z929UoUhDATBs8AVNFl/sJpK11O
307Qw4C66aabbrp9KoGKavlRyO+LV10ma1FRUjoJe1IO1Q9/+MOoDtXZUkonLStSSm9oaMCh
Q4ewaNEivP7661i9ejX2JR5CWmouTpzIRebJDGTmpSKr4AgyC48gI/8o0vOOI6+UQVZpLvLK
spFbmqm0k8gtyUVuYQFKSypwqqgMZQwAS/JzUJh7Etk5GUjPyURqTjaSM7KwPykVO7btx4ZV
27BpxWZs37Ad+/fsQ/LhJAwNDfEOmglUqtfqg4GKQCrM9YtU8IkminORTxWoNJ4kMQYrEe2y
f1GTzM33owJVmK8G5NBDCs0kBsf2HVQwSLuyUFV3CiqwFVHLVkSBStAAVViGKbVBiAMqFapi
EKQNVwrxHjEVBLUilIICVTNEF2PbKtvoXirddNNNN90+hUA1f/69PCn9wtnn4TOfnYVZlDP1
l7/8Bffddx/uuusu3HHHHTwpnWQTVPXWj2MUNiRoqampwcGDB7F48WLejh49CmN7B7oHxmDq
6cfIeB/sU72wW5rhMDfCMdqM4fYKjHfVKq0G5q4K3iyd1KpgM9XCbWqGr60FkbYmSF1tkAZN
CA8ZYR9qw/CgEWPjVA1+FK0NRhTnlODE4TTs3rIb27ZsR0pKCtrb2+OkHbSdN7NTtSrqVPQ5
wgCD8r5CJHrFBfN8UW8PV8v1ywVaqU6YGIyJFgaUwrXaGnGCAjCUMM/rhXERwxCDNVkqgte3
i0zLVdmFMA8veoVYMjtfNamEHh0MmKaCshq2oIhccomIYIgXfJXhjp1bn1MusBqSwVkVzfRE
EC0p4yPxRa1oKGTQ5AKXWhE+US3Cqwhaktie2yN/trAs4BeV5POx9/R6FKASP1LZE9100003
3XT7JAEVlZ55esETePyJh3kJmlkENlSo+I033uCJ6STs+cwzz+DEiRM85+njmtlMCuZ9qK6u
5mE+8kytW7eOK7GT50pWpKXcIAek6R5IpiKEa1IRKToK94lESCUZcitNg1SWytpR9vcR1tjv
4jSEMg4jkpYE6Th7LIc9X54Jqa0U0iSDqzDbf9iJSNCD8cFhGCprkZ16Ajs2beHHsWPP7g8F
Km1ulSr+GVsJGFEKDcuSDUG/FR6HBe6pSbjsk3BYLHDapmGZsMFinuLFaCmJ3jIdgsOv5CoF
Zc+RoK25p9TmQlzpCypCamF9NAjBY4czIPHEfJ9PgmvaC7uD7d8bgIX9P8qaJRQrjMyLtHJ9
KvYZA2roMYywZwq+KSvGhgbR3z+IySknL5rrDotwePxweZyYtpvhnRqHdbQXluFeOKxm2OwO
TDq8XDFZUD1koQivHh9h+4NzCsEpG6zDI7BNWOHzhqEKZJDKtnvSDtfEGHxWCyxjoxy6aUWp
tq/p/7PhIdVNN9100023/wmgWrduDVasXILVa5Zj566tmPUv//IvuPbaa3n71re+xXWoSNiz
tLSUe2E+rhGUUf5UXV0djh07ho0bN2Lbtm04deoU3Ha7XFjTPMpAqhZSeiLG33gcPfP/G4O/
vxm9N/4c3f/1n7x13vgfaL/531n7Idp/+QOYbvohWn/576j+1Y9RfvNPYLjhp2i59edov+tG
dD37J5gT3oa3hkFWkO07aMfUxBDam+tRkp+FfYm7sHHbBiQe3g+j6cOBSl2dqCq8x1TVZaAK
eBg0djWiovQk0o8dRtLBBOzft4e1BNbpe1lHJyBhfxJS0k7iZGEVyuuoXI4NTk9Y9mKFQtwj
FNQWTVVrrinlNwIeKya6a9FZlYGmygJUNHajvHUCtQ1dKK+oRVFZKYpq6lDUPIRi0zTqRiT0
TDOoIk8Y1SCTFO+SEKvubmN90mSoQ3ZWDlKOpiG/pBzG3gH0DI7A0NSI4qJc5Jw4jIzkvTiw
Yx0O7tqM7Ix0FJdVoc7Yj9GpEHwBubSFm0HWoNGIptIiVGQcR9bhQ0jem4CTJ7LQ0z3IS4FQ
iYnJMSv62zvRUVsDQ2kh0o6m8LqOVIpIBSi17z9MqV433XTTTTfd/l8B1QMP3I8bb/pP/MvX
r8XVX75SzqH6zGc+w7WovvnNb3KgUmUTzsYqP6fTibGxMb6q7/jx49iwYQM2b96M4uJiTFnG
IXkdkAbaIJ1Kg2v1y2j55fdQ+aXz0XzxeWg79/MYnHcF+i67Al1XzoXpqkvR/qWLeOu86iK0
Xn0xar4yF+VfvhQNV8xFw5UXo/qaC1Dzky+j66U7MHV8FSRrK+AahnW0G6a2egZy2UhOScCu
/TuRnH7sIwMVbUNNBSr6bZ00c1DraKxm4JGCvTs2Yd3qZTzrf+lyRq1r1+D5l17ES6+9jjff
Y/9v2IKEgynIK66AqWsYU3aXnGQe8mM6GIDF64XV6eDepukpNxyOMKwuCVMeBiIjfQxWUpGV
uAyHdqzCzqQT2HuiAnsPp2MrA7Z127dg3d59WH+0EDvz2nGswYaKfi/sYZEXlZVrR0V46I3e
d7DPhKb6SqSnnUBC4iFs2ZmIw6mZOFXXAENLCwoZTB1N2o1ta9/GluWvYtlrT2PRa89h5dIl
WLluC7YfOomCmi7YpiMIeEXYRy1oZpB88kACti95GwsXPIVnH34Ya5etRVlpDWy2AOx2P8aH
JjDc2cXB68T+BL6/xMRElJeXc6ii64WXJdJDfrrppptuun2Cgeovf7mH51DNvugLcnHkW265
Bb/+9a95u+mmm3Drrbfiueee4x6qszGgkd4U5VCRh4pylijcR14qSnq3mEfkkjFWBlS1RzG9
5hm03PR1GK78DHouPQcjF52HvgvOR9fsC9F66XlomnsuGuedgybW2tjzrXPORfPlX2Dw9Xn0
n/8FDJ5/Hoznz0Ltteeg62//AVviQkjTJki+cdjMfWhtM6CwOB0J+7dh7fb12H3oo3motEKf
quo7ed6qK6twJHEfdqxbjzWLl2DDmtWsk3fj0JFkZObloLS2CieLC5DD4KGgrARllRVoam7F
4CCDKZsDIScDKq8dLusIjH3dKGtqQkllOcorqmCoaUNT4yAm7BJsDKoo3FZflIy0nW9i76a3
sSkxGVuPFmPzvhSs3rodi9evxnvb2O9DuVifY0RysxuVYyLMoQiCVPNPAaoptx+tpi7k5Wcg
NfUAUo6mIvVEDrIKylHV0I7OwRGMmie4rER3Wzlay0+gsTAZ+Ue2Yd+WFXj3nbfwwOPP44Hn
l2DRphS0dIzB5Qgg4PDA0tODzsoynNi1Fe899wyeffBBLHtnGfLzyjA+7mIXYggBdxCC24Ox
thbkHjmMrevX81WfGRkZfBUohWAnJiaiIUDddNNNN910+yQC1VNPPYH7/3Yv7vrT7bjzrj9g
1r59+7Br1y6sWLGCPfkUF/YkoU8Kz50ND9Xw8DA6Ozv5YEk5VKR5tWXLFh7mmXJY4A+Mwz1Q
AV/BLoy/fT8af3wVGubOwtDFn4F59hcwfNFs9F5yMYyXzUbTFdQuQOvl56Nz7gXomnMBei6/
CD0XXQD7+ZcicPFlsF18Lnq/NhsTD92ISPJSSM5unns0Pt6PuqZanMxNw7Y9m7BqwzrsYAP5
RwEqAigtUAUCAa6ndfhgEh7/66N46O4HsOCxZ7Bh3WZk5uSjuqkF3aMjmPS5uKSCVwrBE/bA
63dx1XYKt/ntVkz2daCn4RSqS7Kw79hhLN++BYvXrMSatRuxa9shHEjIZsdsR2uHFR1N9ajI
2oO0Xa/jwLZ3sfVQCranlWDL4eNYvXMXFm1ei3d37MB7SflYW9CNpHY/ys0SJiK0EtEPgUKT
gh+jDOQKyquwO2EztmxbjSOpJ1Ba0YTOoUmYnQG4QgIv0yOX8bGzvhtAZLwRfTWZyE7ehSWL
FuPO+x7Drfe9gKfe2obSKhMcNq8cSiQImrKgtSgXG956Hf945BGseG8FsjKK0Ndngd0epMKC
vBK7b3SYAWIuThxN5tcFLVggSQ0C7a6uLh5u1oFKN9100023TypQrV+/FmvXrcSmzeuQuG83
Zn3ta1/job4f/OAHXIPqN7/5DV544QWuQ3U2Ss9QuI/go6qqig+Y5KFSgcrJBl8paEO4twaR
rF2YeuMBdP77teiY9xmMMTCauOACDF96ObouuwItX7wCDV+6As1XXY72Ky9H77wr0D/3CrRd
eimaPncehmZdCOc5c2E99zx0X3khRub/F/wHlkGydiHgtKBnoB9ldbXIyMnE7r27sGX7HiSl
pPOVhh8GVOrgTo1gihTkjUYjNm/chnv+MB/3/uEBvPTsm0hJyUJr1wCGbFOwsNeQ4KePwUlQ
YhAGP0JhN5c9gGsSQ801KD62H3tWL8Tyd5/Ho889gdsf+CvuuPce/PX+h7DgydfxygtrsWlb
PhIPFuFE8iGk7lmKIxufY0D1JrYdPorNx4uwJTkNKxgQv7NpDRbu2IaFh3KwNKcde5pcyBuJ
YJTy0CVaMeiDl733wOQUThQUYc2mZVizfgnrjyI0mkZg8/BCPFzxXa6ZSCv0rJBcHbC0nERR
0nrs37gEy5YsxePPvY1HX9+CVYkFMLSOIuhTZCEIqLzT6DpViA0LX8PzDz6ENUvXyEDVO8mB
KuRmcBpg/W2dgKWjDc2GGmRnZ2Pv3r18cURqaipaWlp4H+tApZtuuumm2ycVqB5++EH85re/
wne/92/4129+HbM++9nP4pxzzsHFF18Mgqsbb7yR51CRp4BKxHxcc7lcfDVfU1MTHyzXr1/P
Q34EbNbxYTZoT0EarIWUvRvuNx5G30++ju7Lz8Po7PMwfN4X0HfhHBgvvhz18y5H7WXy72aC
rNmXo3v2PIxcfS06L7gEIwyoHOdfiokLP4+ua2Zj9P4bETq8EpK9D0EGMN2DgyiprcOJ7Czs
TpSTxdPS0tH+IUBFj6uDOzX6mz5TW1sb1q7egNt+fRfu/P19DH7eRVZWMQZGJzE+7cKY0wmr
38uFP0mnyh/xIhRyQWLNMzmE6tx07Fj+Fp78y2/x5z/+Ej+/9UZ89xc/w/U/+w/cdPOtuOu2
+Zh/zwI888IGvLVoBzavX4fd697CwfUv4fCuJUhIOYZd6YXYcTwdq/cnYNHOjXh7DwOrpGys
yGlCYsMk8gfdGGfHH+BaVjJQDVsnkZGbi7UMptZvWIEagxFjZn+0FqFASexsu4h3DH5rO1yD
NajK2ImNDPooh2r5ijVYvH4vNiQVI7/ZjEGzsoIvLEK0TUKyjaLnVAF2LnkH7z7/PHZu2c3g
uQFmK+uDoISQn23rp2R8J8+fc9osqK+v5x4qyq2j3wTfdM0QvOqmm2666abbJxGoSNjz29/5
Js75/Cw5h+o73/kOrr/+evzkJz/BL37xC/z2t7/lOlSUlH42gErNoTIYDFx7Ss2hIqCaHO+D
5O6C1F8AMX0TJl+Zj56fX4f2K76AnvPPwdgFF6LvvIvQdeFctM+5CsbLruaN/jbNvgwdDKAm
v3g1Ri+ZjZHZ52Do4llovmgWqr8yCz3zfwpPwjuQLCZGdRYMTYyg0tiCzOJc7ErcgW1bViDp
wHYY25riluyrnadqcKnhPjLyVNH/lDRNYSkCspdeeBWvvvwG3lz4LlYsX4PtO3bhSOpxFJSU
orKWwUhdLapqKmFoqENnpwkD/d1oMtQg5dB+rF7yNh6Zfwfu+uMtuOm/f4sb/vv3+O1tf8Cf
7rwLTz7wKF569jUsWr4L2/Yex/4Dydi6YQ22rlyI/TvXYH/yYew4koxdGSlYlLAJr21eg/cS
92JFSjrWZxTjSK0JdRMO2EmXKuJGiOtk+TEy3If0Y8nYtHIR1i5ehFy27WDvJMKMXfxuF6wT
/RjqaUBx9gFsXv0aFr7wCF559hE88+SjeOqpp/Hca+9gxbb9SC6oRZlxBGMuCU4GSQgKDKjM
mKgvQ/7ejVj23BN46K478OwzL2PdtoNIL2xEVdMghodtkAKsv8MMUh3jCDqn+IIFCj2vWbMG
e/bs4eFhylHTPVS66aabbrp9UoHq2WcX4E9334Gf/+dP8IMffhezsrKy+GD23nvv4aGHHsKf
/vQnHvIjnaiz4SEYGRlBd3c3PwBSSl+5ciWHKvKATdtGIAX7IU1UQCrdD9vKZ9F5x89g+Ncr
UH/l+Wi57Hy0XTmXh/nqr/0iar8it/prr0TD1XPQdNWlaL7yEtReeg7q5s1CAwOp6m/NQtUv
5qHvpdvgPb4Wkq0LgtuCwfFRlLe0Ir0gH7v37sDOjcuQnLgFxuaGuJCeNlfqTPlTasdaLBau
rUWf59133+X1D5999lkOo2+//Tb/jDt37uRJ6pSjRonXBJRUI5E0vujxlSuWYOGrC/D3vz+M
vzz4MO5hEPXwI4/h+QXPYPlbb2Pbhi0MznKRW2pAcVkN0hioHWEwmJa8F8eOH0Fi6mEkZh/B
ikPb8N6erVjFIGvziSzsysrDieoG1A+Nws2O1S0FOVCRxIN9vB/FmalI3LAW25avQtnJcvQ0
98MxbsXU6DD6TQaU5SdjzdIXMP/uW3DLTT/GrbfchN/fdjvuuu9BPP7861i0YSf2ZRUgt86I
XlsY41NhTFsdsPZ2wFh4Ainr38XCx+7Dvb/7De65529Y8PISrNh+FMdya9DdNy4LgAanEZzo
w2BnO5fQOHz4MO8nyt0jVX3K39OBSjfddNNNt08qUK1Zs4rnUG3fsRnJRw5i1o9+9CNQo7Iz
1G644QZey4+U0skT83GNVmz19/ejtrYWycnJWLVqFZdOoEHU552GBBskXy+k3goETu7CxLJn
0PXYf8N410/R+ofvo+m278Nw23dQ9Ydvo+L2b6Ly9m+g9vZ/QePtX0HT7deh+c4fo+a38jZt
f/0ROp/+BXrfvhO2pHcgNqXzhHQS9hwyT/GCyXlFNTi4LxkHNu9A+oEDDKiaoiE9Ws2ndpy6
sk+7hH9meRr6bFTomT4LhTMJoCjpnjwt9Bm3bt3KH6NGQEU5ZDk5OXwFJeWQlZYUoKQwk4HW
AWzYsQvL1m3EsuUrsXblKuzdshVHDx1BSXkjGo2D6OwZRnNjExqrS9DeWIVWYxOqW+tR0W5A
Rl0RjleWIKfBgKLWDpQae9A4ZMawJwAf5X3xOoNBDlQk0tnMts04uA/JO3YjMykTOUdzUJ5b
iJbqSrQZSpGXeQCrl76MRx/8Ex558F48+eTjeOGV1/HWklVYsy0RCceycLLCgIrWHgzZgxiz
+WAdn8RIeysa8o7j6JblWPKPv+Opv/0Vzyx4AS+9uRzLNh1AcnopurqGEHa54RnphamyCAXZ
mcjMzERaWhr/TfIJlHOn51Dppptuuun2SQaqRx99GH+88zbcdPMvuB4V16GiPKovfelLPPRH
SemqDhVpAn1co3wjUktvbW3lOlQEHJRHVVRUBLvdKgtOil5IoSlIlh5ILSWQCg8DGdshpm2A
VLALUv42CHkbEcpZDSF7OaTcZewx1grWst+7EEzfjuCJ9ezvrZAq9kJqOgJp+BSkwCBEzyRc
Hje6Bs2oNHSgIL8GR/YdR9LWRJw8mAJTcysPbaqQpFVD13qqztTUFX9qnlhHRwcvsUMwSl4o
8khRo89NsEBeOfJqkTQAhUEnLRMIB5yYGB9i0GREUWUNsnPykJ56HDnH01CYU4DGlm50D1lh
tk7DapmEc3IUfvckfAE3HKxZAw4MOScw4LBh3OfDZFCEJQAQqsowRS0S1aKK+J0Y6+1AU1kp
yrNycHxfCnau24ad6zcg9/gxtBrK0FxfipKiE0hPT8L+A3uRdCQZx9JPIi27EJmF5civNKCy
2YjGrgFMByW4fIDb6eIeLkq2r8tLRwZ7XeLWLUhOOoaU4zlIz6tAeW07+gdGYR2bQHdDNQrT
juBAwm7ulaLrgUJ/vb29PNyngqxuuummm266fRKB6t57/4z/++1/lfOnqH3jG9/Addddh3/7
t3/D97//fZ6UTjpUNMCpHpuPY1QcmcJ+lENFHqqlS5fyENn+/ftRU13P4GIAfT3jsAxMYHpw
BM6uDthbDZhsLIeloQyWplKMNRZj2JCH4dqTGK/OgLUmA666dLjqcxDoMcDeVgFLYwFsrQVw
dJTA1n0Kk311MA8b0W5qRgNpHpWW41haNpIOpmL3xp3YuWIDknfsRbepgyt0q94oteNmdujM
3CptmRTVCMhUuKIwJ0EkfW7yYplMJg4LJCNBwEAemAjVvWNAGQp6YCPwtE9jdHQc/d096O/s
xFDvICw2NweWYEQJOYaoOLKP1xEMiiGEKOFdCMIrClxpPahAVFApZUOJ5rRdOMKAClRbMIjA
tJ31dx8GjSaUM2g7vHMv9mzajLz04+gyNmJ0qJOdsx6MMtBr6zChvbsPnX1DMPWN8NY9PIYR
qx1Wt4/2iIjAWigMweuG32aGfbgfI+w89rYZ0drchs6ufvSPWDAybmfwaMXIwCBM9XWoLMjD
wcQEHgalRQujo6P8eqHzoQKtbrrppptuun0Sgepvf/srbv31zfj+9d/Gd777LcyiJeuU27R8
+XI8+eSTjLju5TlUlFtFL/y4RrIJpENFYTH1fd566y3upTqSnIoTaUU4mVGOgrwqlBSzVlKG
wuIi5BfmIacwG+W1lThVU4GyqlOoqDiF6vJSGMpK0HyqBE0VpagqK2Kvy0N+fgYKCjIZCGai
uDgLBYVZyM7LQHp2Bo5lZGDPvv3Yum0Xtm/dgY2r12LT8tU4sGMnhvsHonlSMxW6YyVmpDjF
dNpeGx58v6auEKQcrfiSNWoTOVBRaZigIMrFhhmgBP3sf68HYSpmLGqKEPNCxOwYxSB7f/Y6
UVD2ocCH8npB0jR6PdsWYihWfiYS5PATmLKjp74J1bkFKMnMRJuhFhOjA7ATFDlsmPa4edmb
kNKoDI43JCAgitH9hznosf/DVFGZAWkwCDHog0AJ/H4fbJN2uN1eBEMi/IEQ/3+wlwEag01j
Uz2KCgr5Kj8CTYJR6icttOqmm2666abbJxGoVq9eic1b1vNIztFjSZhFOVPaRorpVBz5bAEV
7YM8D6TbRFBFuTKqiGPOyVzUnqrlraqiFuXVNSipq0JRfTXyG2qR11iLHDbI5xkMKDQ0o9TQ
glO1baioamUfqIUBViNqa1tQx56rqW1EeZUBFdX1qKxpYPuqQ2lZOfLyC5Gdm8PfL+nwQaQd
P4bUYyn8d1lpMc+DmpmIrnagViF9pqyC+r8KWWeu9RfbD7XTHw9HCyFT3T4VmsSIwJukPMal
DAT1pEaUpuyLXkn7FaVY0/ywFyt/iTJMEYTR56LXRMJwDA1isrcH5t5eOCbG4HVOcwD0M0Ai
gAppgIq8XfR4IORnnznEj4NASm1cfoKxEDV6X/7eolIWmY4XArxuD8zjExgZGubXBYU+KcFf
hSm1n9Smm2666aabbp9EoHr66afwwIPzuVL6f//uVjmH6sILL8Q111yD733ve7z0zIsvvsjz
fc7GKj81wZvysSjURfXaKIeIAKuvqxsd9c0w1dWjsY6BlaEGFU0GlBsZHHUycOruQEkbgyi2
bbWpC4bOfjR2DKK+rQ+1TT2obehEh6kX3V0D6OgYQGtrLxqau3jeUUNDO4esjvZuGFvbUFdV
jdqaKv7eps4OdPUNwjbthNU2Fe0oLUCRaQHrg3KpPkojr9bMfcj/ixyszpS/Fb+tChgEHMp+
6EdQRDWphZWmgpWAGYBFEEVAFVFey/4PBbjHiuCKvEuhQJDBGzg8EUTZfWG4IzGgorrK5FGD
GIx5vBS4U8EvKMQ8V/w5kW0nhKLbcgANC2wbkX9utW+0MEV/q54q3XTTTTfddPukAdX8+ffi
e9//vzEdqjlz5vCE9G9961tci4p0qAioSDbhbOhQaaGAPB+0HN5qtcpFcH1++CYm4R0zY2p0
DObREQyPj2FocgIjU5MYm2YAZh7ByOQIJmzjsEyZYbWbYbGOY9QygtGJQVhH++Fk27itFkxN
WjExxl43wrYZt8NunYbb7sT05BRs45P8ObOFvb8jAEdQglcNpwFxQDMzb+p/+JQp7f1M0LT4
7bn3hzEH4xq5ESzFNeV5QWm0PQGYqIAWASR5miIBDlQqgBFuESoFo0nt8t+M1RhQ0UbknQqQ
rrocgkRY9tbRX5LcOHzx4xRkoOLbhbiXikNZ3Da66aabbrrp9ukCqsceewQ3//K/8JWvXo0r
rpyLWQcOHMC2bduwaNEi/P3vf8f999/PNZVoVRqJcp5NoFK9QBQaoyYE2QAbZEOqjzVvBBHW
gj72fAjcw0Eej0DAh3DIx0Zgr7wakDVBcCMUcbJ92AG/jWsaSYKPg0Ek4EfAF0Q4GOFem5CH
PeYLQCThSfZ/WJRBapr97QzLQKUe10yg+t+AKVFpcmhMhiZRUpugoE04Dlrk7ZXXqJ4pDlBs
O8oH45AUlh8Lq1AlxZqoeT15jgQGRhR+FOQ3FsUYUAWjMEUARDBEOwycBlQqJIXjtleACjGg
ggJUKnjpQKWbbrrpptunEaiWLFmE9xa9hWXLF/F6frMoCZ3EPH/3u9/h5ptv5iE/yqEivSRa
bXW2gSquCQoMhDRNDVtFztAo1EXeDknNPaKB2sOal2ssyY+LmveV83bUxG2oq96ohAwJXoox
oHo/+PvfAyrZkwONB0cGqpACLjJQReTAmQaI1LCfoEBRQG5aqFL7TwNUUF/Pk9xDyvvHgCqi
QJUKRhH+VJh7p6JAJanHJcQBVZyXinu0wrGmASo1hKibbrrppptunzagevHFf+DpBU/g8Sce
xmOPP4RZn/vc53DRRRfh2muv5TlUv/rVr7jaN2kpeb3es3JA5PlRc2XivEAqGGjzf2aClfq3
oOT8iCqCCEqLJXYTIdAAHuGDu8BgiVajRXiLkDyBJMsMBCWSGBB5XhA+YIXe/3QOj5ImLgOV
EAOqSBQ4BAWmfIp3J+bZkUN2Wm+ToICRT/bWcY9dKAZUYSnOSyWTjBTzgImKa0yQm6iAFe/t
GTAVayHe3zJMqS0ewtRzIUabdlvoQKWbbrrpptunEqj++MfbeQ7VxZdcgHPP+6yclH7BBRfg
6quvBtX1++Uvf8mBimrtUc7T2fRQkZHXh8CKQn5+vxfBiJu3UCTIHmcwEWQDeIChkp8NzOw3
/R8JCQiFAtEWDIf4tiE2xvvZqOxhsOBh7OMLi+x/9hh7Dy+DE48QgCPkwlTQCXvQgamAHdNh
O3yigw36LnZwXq7PdKZQ3/9GUvRpQCXIOUYEGsEoUDEwEj0cqETl8TBiIMX3EefN8sleO3oN
91RpgErjqUIUlhTQgRQHVHHhQcj7Ph2mwhr4i8GTClDyc4jzWoVnQJZuuummm266fRqB6pFH
HsINN/4cX77mi5gz9yLMorpzr7zyCp544gn8+c9/xl133cV1qEifipayn82DInChfZJUAS2X
HxjuQc94O3rNRgyaezA8MYKxUQtGR6wYHrJgcNCM4XG5Dl/v2CB6xvrQNzKAflLkHhvH8Ngk
+iem2eMOdI9Mond0AgMTbHvLOPrMw+gaH4BprB8dZvZa6xCGpkYxNj2MSecQppz9cLC/Pd7p
08rLcNj5X1iyHwUq7m0KnwZUYQ5JBFNu7qlSgSooxYAqlrNEgEKgQyVb3ApU+ZSwX3zoFBqg
ioKQchwQZoRZBcRATfJxmBKjMCVocqygybEKxz0fOGNyeywEqJtuuummm26fNqB6++038drr
L+HV117E62+8jFmvvvoqV0anwsh33nkn7rjjDjz//PNcvfpslJ4hWKFG+yKl8IqKCl7WhmQZ
ymvKcKqpCKdaClHdUoW65no0NLahvt6E6ro2lNe1oqqF/W5tQklzDYqbKlHWWI3yxjrUNjWh
rqkNNS2dqGgw4lRdAyoNBr4PQyuVRmHbN1ShpKkehU0NKGisR1F9Lcrrq1HHHm9prISxuRqO
qclortiZOu9/GqjCcUAViAJVQAtUYgyoAjOAiv72R+v10TYEVE4Fqnzyfmd4qFSgimBGEjk0
QKWGXOn1IuVLeXgDgyoCqgh/P0RBKawJC0qKB0sFKjo+b/Q447fVgUo33XTTTbdPI1C9885b
HKSiQHX++edj3rx5+PrXv44f/OAHPCmdPFSUQ0Uq3x/XVKkEKr1C9e1IIX3lypXYu3cvMnLS
UWTIR1Ejg6vGKlQ3NHCRzrraFlRX1aOispY9ZuDPldSfYtsWo7iuFBW15airq+FlXWobmhmY
GVBWWYXKagZlDJjqm2pQWV+JYrbdybIypOQVYu/x49h26BB279+L5CMHkJdxDKW5J2GdNLPP
6ZOh5gy5VPEmaH7HpAxETXK52vgJiOZ5nQ4N8mOSJoQn50DRPmVQoVBZWAEjt/JcTMpATegO
Rz0/BC/kFQpx4JETxpVk8zhAioX8Ipr9nQZUETWvKyBDnQJTsocqrAnpaZPQFW+Wso0KXH6N
dyqorv6T1NWL8X0TW+Go6Ssx1t5v22g7w7l4vxaTq5gpTSG8T4udPYjxqyXl4xHiQp5ySFM4
w/HH8smioda41Y5CdJWnug9oriV5P/JrZq4SjUlUhDX7+Wj9qZtuuumm20cHKqrl9+Of/ACX
XzEHsy/6gpxDdd5553Etqm9/+9u46aab+Cq/syWbQJ4pUsSura3Fvn378MYbb/AcrY0bNyK7
IAcGUyOKDRWoaKhHbX0LyosrUZFXgpbycrRVlaKttgTNdYUw1Oajuoa1yjzUlOXBUJiH2sJs
VJfmoqo8H3VV5aivqea/aypLUVtVxt6zGvkFpex9ynAgNQ2b9+zEui2rsGLFm9i6ZinSDh1A
Z1sHImzkFwU1SVv5rXQieddIuoFyt1SFcpHymRBSEuHllYJaRXFBTbiHsioRipCmtuSMkkzv
EeQixlAep0T6CHvcK/nhFqdlzxCtYhRkNfQAo5Zpdrwuth1PrKdwJYmSS+owGitVw4VK6f+4
pPQwLw0T8ou8PmA0HEcSEyGtKGgIfo8VAj8GOd/MH3LC43PLgqSKUCjbiJecERRQUldfBsQI
XBEBzogIDxfwDLLjCHHhTxFSvLK7qOTWCRGERCFa1ob3iTr4qz+iHI6lbf3sfalkD7UQe5xa
RJpReueDGq3yZMckCoHYwgaQbIcXIcGnhC4DMvwpK0ijCykEjaiqCAWEw+xcBljzMYj0sf+D
8n4pR4+U44NBBPysH4Me9nyQXyvByAx1e7oGEIpeB4ISGqXC1hIVuBaCKkLJqzHV642OJeBV
vJkutr0XgaAT7qAXQe71lD9vVDmfLwYRdajSTTfddPsngeovf7kHP/r37+PSObPlpPR77rkH
1O6++24e8qM8qtdee417qM6GsCflS1Gor6qqipecWbJkCRYvXoyUlBS0GltgcZsxPNmHqalx
BKfM8PR2wmtsgNRFrRZSdyVrp1grh9hZBrG9HFIz+7++lLVihNuL4e8oRaDTgGBXI3xdBni6
GxAYbodgG4VtZByjwxMwNDUjKz8bB1P2YvPm5di2bjWO7Seg6ooBlTKwQYzPpeK18KTYakJS
CmfDOB9k6XFK6fYr6eCBKFjI0AQ2gNJASgoMcRpSiqxBSAGaKATxgZQBCQOqoBJmk+i9aCAU
5OOj7d2SDGKqSCd4EWSJJ+kH1ZIxiIFDNORHg3LEI9MHaXKFwzEI1K4c5J/XC1/QzJ7z8GMS
FOmJqEJ7ICirrAvhKFTKEhUR/rdf403jn4E3BVi176XApgo6ES1QQbMaFPHbfhR4CglSVGqC
4IX+jwM2SdSovYu8bk6IQUhE8CvnNySHMVVvmiAnnUVXo5KOGlfYl1eSBhn40LnzSwQyXvma
EcRYg6zEGuLwFZY/g+otU45JjsqqK1T9iiQI2xe/ymJARZ8lFO1fOse0CCEGVARhgrKaNSJp
wsvRazCiA5Vuuumm2z8JVK+++jKXTaDyM/fNvwezyFO0dOlS7jWaP38+BysS9qRVfmej9AwV
R+7p6UF1dTWHKAr5bdq0CUVFRTBbhthRWhls9EDymSBN1EGoSIL36HoEDyxHeM+7QOI7kBLe
grT3DWDXK5C2vQRp88uQNrC/N74I357nMZ3wD3j3vY1w8kpEUlcD+TsgtZ+E5Ohgg8w09xJN
2ixoaGtCTlEm9ibswI5NW5CSmAxTW/cHApXckaKm5l5ILr3Cw2pBZeDycvVMHuJiA7IvzAbU
gBsB7zQcVjOmbHbYp/2YZhzjoxWMGrkD1cPFQ3BqKRa2/xACMQ8HlEE5xJ5zeeFyeTAVCsFD
Xhk2oJPivMfjwpTbh0mXhEmfBDs7GLcQUyOPeqj4gOyXNb0YH5A0RijEjp19JC87RuuoFbZx
M4I+Jx/IPX4b95JEISfOQyMqQBXhzwUVIU/qi6AmzCdwaPGfDlTUQhG+EpE8VOSdokZ9GCRv
FQNOUVV9DwtRKOGSFkoyPfUfeasCoaC8vQIm9LfH541CCkFvWNkn/ab/AcQDG10DYfl45PqI
mjqJ2u20TVCBjOAryI7Jz5tAf1PeGzuuADtfTrOVNyHoU7b1Y8prx7htEhanB9PsPJLgrI8d
Q0BQIJhdtyG3ne3WJYvaCj6EvE5M2a3su2PFqMWOCYd83sNKmR86kT6nnZ1LO7suvPwThpR9
BkU13BoDXz2HTTfddNPtnwOqlSuXY/mKxVi9Zrks7HndddfxsjMkmUA5VDfeeCMWLFjAV/md
jRwqu92O4eFh1NfXIzU1FRs2bMCWLVtQXFwMq3WIHeAYIvYqoD0Nvow16Hz9blTddT2qb/km
an7xdTTe+H/QfMM30PqLr6D9519Gx398CR3//kV0//AqGNlvww1fRNUvLoeBPW+89d9guuN7
6Hj0BpjXPw1fwR5I7lE2dlEdQTOaTUYUlxbgwMEE7Nq6EykHjn4oUKn19rRAFQsB+WVvQMTB
AMSOSfs4ugd6UNdUi9KyAuTlZ+FkdjprucjMP4WCsgbUNPajp8/GQCuIsCdyWjHjWCFhZWWk
GlzzuGEf6MVAswFdLY3o7BlE74gVQ0MWBqx9MHW0oq2rC81902gaiaDTIWE8IEMNH0B52A8x
CCQPjNcFt8WMsd4BmAxtqC2uQnluMSoKitFUV42uzjYMDg/A5nLxkGBYkPspqh2mqrMrQCUP
1nKMTgUqWesroiTX+6MAGQcnkFeAqkAVlhDz2IUjsVI5p3moENURo9AnwWg0pKqEZmMaZeGo
xykc8bDm4zARDsVkIniJQr/4/sKy2vCcek2ohXp4vwb4NUH+ynDIC7/Pg/GhMXSza6ymrAaV
JWXo7TDCPW1h34shdHY3IK8sG6WGSrSPTsAclOCgELAoh2kjLrdcazHArjGPHT7LCHpMraio
YNdSSTGKystQUVeFRrbPEasdzmAE1ik3Ojv60NZoRFdrF8YGJ/iK2TGLC4yX+XmRPZJKXSId
qHTTTTfd/img+vOf78bPfv5jfPVrX8Y1114l51BRu+qqq3D99ddHa/kRUBEMfVyjhHQCKkog
P3r0KNatWxf1UNnNwwx2JhDpLEY4ewemlj6Jllu/jbKvXIiqK2ej/vI5aLx8Hpoun4uWeReh
be55MM35PNovPQdtl56HlkvORccV56P1os+g87zPoXf2uWibMwsNX5+Nzvv+E5ZNr0MaNgE2
M0aGRmFobkNhcQH270/kQHXkYMqHAhUl1Udn81Is9Echv4DHisjUCNxj3ejvaEJ1VRmysjNx
KOUgEvbvwq6927Bu81qs3bwZ67YnYMeBVBw/WQlDYx8s404IbrYvn4/1gY+H4AStorkyeHMP
E/vttkzAVFmAiuP7cCr9CCrK6lBp6EJRWT0ysvOQdiIF6TkncbzUiBMGMwoHvDBOi1x0AUo4
TyThLl7UmD3qNSMw2oMOdmHkJ6XiwLrtOLhpF04kHMLx/QdxKCEBCXv24vCR4yiqaERXvwt2
h6wNxo8vyHbFQEsK+PmgT6WCyAtC3p+gGJKV6AlIed9R/g/bVvBwQAypye+U++TxIewPyMWR
3y/kR86kYJhvx1s4rITFYsKspEsWD1Sy14jOUzDkQijs5rAjMACedo1i0sZAccrCfgfh9rDX
B5XPFtSscnSxfdBjfta87LgoXcwX4fAWZHAY5qG4oNxUzx+jsrDTgclhBrxtJlQUVaIkrxxZ
adk4eSILjbVVGBvqRF9HLYoLkrF17wpsPrQFRyvKUDU0CaNVgFXtY3dQ7l/zKGzGZrSWlyIj
NQU7d27Hlp2bsffQHhw8loCUrKM4WV6B4vp2FNaYkJVfg+zMYhRnlaAkswhFJ0tRU2di0OXj
qy193HMohyh1LTDddNNNt38OqO6/fz7PobrgwnPl4sgk5EklZygZ/YYbbsBvfvMbLptAxZHP
hrAn5VBRyI8O4PDhw1izZg02M8AoKyuDx2Flg5cdUs8pSBmb4V/4V3T/9MtomPcZtM+5CP2X
fQk9c69B79wvo3/uFRicMwdDl87GwJzZ7PG5rF2GkXlXYeTcS2GbdQlcn78E5vM+j54vXYSJ
+25CJHEFJMsAJKeT61vVt7Qjv6AI+xISsWPTNiQlJn0oUJGkgijGcqdUj4fbM4WBbiPqC7JQ
djwFRxL2YuvGTVi7bgM2bNmM3ft2MbA6gN0HdmPXwX3Yk5yCpIxcFFQ0oL1zCE4bAwyCtZCb
h3SEQAQ+PxusvWFe01DykaBpbGXclGUMtbnJOLHlHRzbvBwpB0/g8NES7E/Jwcade7B+00ps
2bsDm1NKsCXXhCOtU6ieFDAlioqHiKAhJCdbC9MIjrdjvK4YqZu2YtWzb+L1BxZg4xtLcGLP
ARzbsx/rl63ESy++hgXPL8Si5buw71ApCot60NVuQ2BaqSFI4b5wiIciA0ERLn8YXgaHHgYB
lIxOQCXw/vKybanmoh1edgwOBiVutxeeaSdG+wcZ71p4P88EKkHxz1EYzmm1MxAZxujgECYn
J/l7qEB15ibylYbTbhssthHYHKNweicwMtGJipocpKYnIunYYaTn1qGqfhy9Ay7YJr0yUAmK
l8rBzo+DAccUOwc2ET47+0yuENzBIAOTAAKskSgteN6SX/b6BT2YHhxEY3EZ0g+mIjnxKHIZ
0FSVN6KxvgUj/T2YnuhHd2MxMlI24b1lT+K5t5/Aq1s2YE1aHvYUtqCq2wUfAzhpKojRikrU
H0lC6oa12Ll8KZa++xbeWPgKFi97B5t3rsXGHSuwatsqLFy3CS+v3oHFW1Ow90gRsk6UIC81
D4e2JGAfa2lpBWjpmcAk+1wOiRY1CApU6UClm2666fbPANWTTz6O+/92L+686w/4/W2/wSyq
2Xfo0CEsW7YMjz32GE9KV4U9z0ZSutls5knpdABJSUlYu3Yttm7dyvWoPB42yEoMqIYYUOVu
QOjdu9H307louHQWWi7+PDoYRBnnfBmtrLXPuwKmeXNguuwitF5xCeq/eBkMV16N1suvQ9u5
X8HIZ6+B4/xrMXHhHHR+5XJYHr0dUvouNsu3QAwEMDxhR1WTCdk5eUjYsQPb12xA0u79H5qU
Lns95PARrf5SgWpktB+lBblY/OzLeOepl/Eyay889wbefGcFNmzdiaTUo8gozEJmURZOluYi
r7IMpfV1qG1tgslkxBCDMWt3KyT7IIJjvRw6Dc1GGGob0WxoRVfLIDq77Og2SxicltDFts9O
2YyDS5/C/mUvY9eWfWxAzcDOw9lYtnErG2AXYsWmVVi6j/1/ohm7G+woYUBlDqkhSgYFQT88
YTcCvgnYO0rRmr4f2198C8/f9hAevulPeO+xl3BwzTYkrN2Kt156HQ89+CTuvPtxPPb0Yry7
9DB27ylE3slGdmz9cI+NImIfx1iHCb1tRjQ3tcPQ2AajqZ0Lr5opr4uDEYOMMANn7wADkl4M
m8fRMTjGPlsPTO1taKwzwNjcgu7ubgyPj8E27YDT74VPyYmannLAMjaOnvYONBnqUV9Ti+bm
ZnT0dLP3GcXoxBScntjKQEo8tzpcGBwdQ+9QHyrrKlBaWYzqhjI0m2pQWJ6JtVuW4O//eAB/
fexBPPXaeqzYmo1jOQbU1LdjZGQEfpcNzvFRdNfXo6mkDk1lrWiq6kFb8wh6BqwYmfbBzq4J
L2thKcSLdUsBBw/LhcaGMVhdh+x9ydi6eD0StyehorSJ7dcBx5QHEb+HwbIN4+2VKEjdhJXL
HsETL/0Fjyx6E89tPYA3EvNxrJr1n1WEf8KF6iQG64vew5LHH8drjz6Gfzz5FBY8/QQWvvYc
m5y8i0XLXsULb72M2x9fgP+a/wweeH0TElKrUV7SiFMZhTjEro2dq9azSUQKThm60TMVwRAD
dQvjbJ8aNtVNN9100+3/N1CtWbMKGzauQULiLmRkHsesa6655v9j7z2g47quM1wmcWzHthpV
bcmOnTjJSxzHLZaLZFuyeqUo9iKxdxLsvQCsKASJQqKDqASIDqL33kE0olei9977N++cOxhg
WCTbEd961vJsrr1mOHNn5t5z7+B8s/c+/+aHP/yh0sfv17/+tRKhkkAlI1QPo4ZKI5sgU36y
KF0ClSZC1dvTLmCmhdHqeAWops8sp+HlZyiYP4/ix75G+RPPUTL/Xyh68l8ETD1P2dPPUPbM
ExQ99yS5zz9P9vPfp+DbPyL/n/6F2n/4Lp1ff4Gar32NnGe+TtWqVxj2NkPVW8/QYD/l9W0k
ZOZz82awgJGrWJuY4mHv9CeBSpNCkkA1OjY4W0dVUlqAt7s7eis3c2jdAU7tu8Alk2u4eYQS
kZhBjgCLsvoKiutKqWiu4E5nAw3dzTS21VNfW8SdwlSqsyJJumGNr91Fzp4/w7Z9h9m8ZaeY
MPdz9OA5Tpy2wj4wB5+kIkKig3G2PYHD6U+5fvEg7te8cXCLxd4nmgtXbThreBRDC2POOIVg
4J+H9a1uYjtlHZUGqKYZHR+hf6yPvv56mnKCSXO1wEbvFDteX8Pyn73P7gUbMd1rwIWD+uza
sIMVy9bzwUcb2L5HXDQSOvxuERmWTWxwDMEezly3vojBwb0c1tvLju272S5uj+sbcPWaIwGx
CaQW5FFUnE5pXhRFKd6kRnlw46Y/tgISbBzssba6wjU7exxsbLG2tlYec7/hSUhUhICbbIoF
rHl53uCG+3VxvM442Ttgb22jALmltRUW1na4eYcQlZDL7TIBatVtpOWU4hcSg72bB5b2jhhZ
XBZuip27Pf4Rfjj7OLL3xE7eX/YWv3v/Hd5adYAtxx0xvRbE9aAI4pJjyL4VR3SoFw7mJhid
MMD0jLhmL7vh5h5JSEI+mZUtVA6O0arUik0qqcTx3hYGastpyc0iPzgUXwt7zE8Y4W7vS96t
agaGZhYjyKjbRB89VdlkRjjgZn+QU+c3c0Ds40mPIPR90wm83U3noIrRzmEa0gQE2tlgeegg
Z/R2c0T47i2bOLBjIwbH9DhwYCsb9Lbzm8Vr+I+3VrPigBneMbcpyC0nVaaC7Wy5Jr5zDvZu
hCfnkdc0QEnvFA3jarHVCZWOqHSmM53p7P8CVJs2beD1N17hh//2/bkaqn/8x3/k6aef5t/+
7d/43e9+h56enqJkLmtFvqhJKJO/+uUqPxmhkjVUEqikLENDfQ3T4z1M1eYy5W9Gx64PqPr5
0xQ9No+SbzxCzaPfo/RbPxT+L1R+83mqvvUUVY88RsVjj1H0+DPkz/82md+cT9E3n6br0efp
f+xJqr86j+xn5lG5+kUGvM4KoKqkr7eDwsoaYlNuERYWgYezK67W9gR6+lJWUsnI8OScXpNW
4bNqRstJk/KTLnv/9Q90k56RxCVjExb8/kNWvLWGkwcvERGZS23LCO2DU/RNTCo6UcOqIcZV
YwyqBukb62Ziqp/p0Xbu5McSfM0I4/2r0Vv3Ee8seI8XX3+LX7z0e1586VVee2Mx7y3dzvJD
luhddMDUzgw7qyO4X9qK19Xj3PAMwCski2v+sZjYOmB8SR8zOwuMPaI5e/M2VtldRLZO0jmt
mgWqsYlRBaj6Bxpozg0hw92Ki+sOsuO1zaz8xcd8+rvlrHtzBUtf/5il7y/jk1WbWb5Kj1Pn
HPELyichsZoA31glHXh4xyfs+PRD3n/1d7z5yh95+aVX+OVvXub3f3yNFRs2ctr8Ch5B/oSF
uuHncoHrFvu5YrSPPUcPsHzLdtZJKDiwD8Oz5zh26DAbN25k1ZpP2bFbjwuC+iVcOQgw0z95
Cr3tO9iybgOH9u1XtjcwMGDz9m18tHwV67YfRd/EEc+gFILicrnqEsCOw2dZKoBw6YZtrNq2
nTW7dnH4wmmuuIlxdLRkw/6tvPLRG/z8zbf47ZI9LDtwleNWnlz18sYn3EscqxhP4718svwN
Fr3/JssXrWDzpv0cO32VK9cj8U+vJLVpkLKhCVpH+pmcHmB6qJOWohwy/byItLcnxNaZIAG9
gZ4R5OZU09OvKcYXQDXWw0hTAc0FISQEXsTXx5RL153Q9wjGOOI2/oXd3OmdUcJvaqY9N5tk
fz8cTUw4vnsvehvWsXftCvZuXM3KZR/zx/c/5MWP1vG/i3eweI8RN1OKGR0eo/NOORkhPkR6
uxEsIC8oPgOfhAKiipqoGdQBlc50pjOdfRGgWrlyOT/+n//k7/9hnrqGSop5/vSnP+VXv/qV
AlOyKF1KKMj2MA8j5Sc/XBalS2FPLy8vZZWfjY0NycnJStsX1eQwqqYyVJEuDJ9cT/MbP6bq
B/Mpf+ZZqp79AYXzf0DxE/9M+RPPUDH/Marmf4OKJ79ByVOPUagUrD9J4eOP0/DIEzQ/+k0B
XwKovi+AasNv6PcWQNVXzXBfB2VVd0hMUwOV6zUn7K7Y4OlynbLiqs8FKmnaQCXrqKQkQmFR
Lk72dqxdvJbVH21k57ZTXLH1JSw+l/SCCioam+ge7aVrpJsRBhmZHqZ/pJehoS46G8tJDnLF
4sQ29n/6DqsX/ZFX332DX7/9Nr97+11ee38hH6/cwsodJ9lt5sVp15vYeTtz7dpZnC7vFH4Q
O3tnbNxCsfUMuSvld1ZGqLyzsExpJLR2QADV9GzKT4qTDoz3MzTQSOvtaG6J97TZa8S+9/fz
6Uur2bVgB/qbT3B400E2rNjI0sVrWLR0EwaGdoTFFJGZXUuAXwRnTh5jw/I3WfT2i7zzyku8
98Y7fPDeh3y0cAkr1qxh9/HjmDq5CDgJJirUBX/HUzhf3IrZWXG8p46w7fhJDIwvcM3JDn9v
L6X2TEL8wiWLWbRsKVv1dnLslNjmzGm2bdnKhjVr2bN9J9aWVwgPDsHX15dT4rmln65jybq9
7Doq03ZeAjr92G9gwaqtR1i9/SA7j53ljIUtxgI43UNCiMvNISgpntOWpizdso4/LlvNh3qG
7DLzxTIwjhuJcYSlhxKWcB1bh1MC+FayYsk7LF60UOzbWpZvOMiuMzZc8k4g4HYrWS1DtA4P
KwXvE/1ttJTkkhsaSLybM6EOzvg5eBARkEBZaRuDIzPyrlK5XgDVcGM+d7ICCHXRx9H6BMcv
GrHjkh2H3GJwSq+ltFMtxjkpvj/DDXeoy8shQ3wn/ZycMNPX5+DaVaz98F2WLPyYtxeu5MMN
h1h+wIRDFtdJLalVtLTaqvOozoklMdRTjJk3rr6hOIj9CcqopqZPXZw+iQ6odKYznens/wJU
69atYeHHH/D7P/yWn/z0R8yT4CRBR0aOZDH6GjEhSh2qoKAgpfj3i5rUoZL1MZqi9IsXLyoR
qqSkJIb6upVf9qrGYlRx1xk02Unt4l+R899PkfjcN4l96pukvPAUKd99gowXvk72C3/Hre/O
UzxbeOYLXyHzO4+ROf9Rbj/2GOXPPk7pDx6l9A/fp+3EUibDrVCNNAnvp6G+RVFij46OxdXZ
hauWVjhfc6G05POBSt3UeQ6opqbHFG9qriU6KozjBw+zfdNO1m7Yid5hA85essbW/QbhCbEU
VhRS21RDc0cjTW2t1Dc20Fh7h7LcW4S6OmB8cDu7Vr/L6iVv8O6iD3l35QqWrl/Pup172HvK
kJPmzhh6RmMTJtvnBOHlY8V1u5O4Wp/B3skVG/dAHD1vYnrVBkOT0xhbXuKCYxCGPpnYp9QS
WdVDj3IlqI9vUhaPTwi4G2qloyyd4oggnE/bcXTFKTa/vRODTedwvejGNVNHjugdZemSVby3
YDn7j57HzSuSoLAk7O2c2a+3leUf/Y73Xvspny5dxPrVa9myaSu79PZw5KQBJrZ2eETGkpSX
QVyYE8FOx3Ez2cjVC9s4aWTA0UuXsRbHHxEVSlJcLN4enkrU6ZN1a1kqxkBGr2SkapdwvZ27
2L55CycOHcHH8wYFOblK/Z0s/F+/fReL1+5h28GLnL7kzjkBE3tOXmbDHgP2n77MJQdPbsZn
EJN9m5KmdjrGp6gQ1/T10FD2nTnDsh372GnixgWvJG6k5RNVmEdKabLY72D8giwwszzI0SOb
2bptHYtWfcp7Kzazcvc5TtoFcV1AT3rjMG0j44ry+fhABx3VRZSnxpBx04dQZydcLe3wuR5M
QWE9A8NSG2tGiHVqkL76PHKjXHAy3onhia1s3LOTJXtPsNHEGYuwW+Q2Dah7Nk7JBQr9DHe0
0VxZzi0xXtetLDmxZT2fvPcOb7zyFu8s/JStRy9h7BSEX0IuzYNqMdCe1mJqCmOJDXPnuqcr
Dp5+OPjGEJ5RRW2n7A6pAyqd6UxnOvu/ApXUoXJwtCEiMoSs7DTmvfzyy/z2t79VIlS//OUv
FR0q2XpGCnvKguwvas3NzVRXV89GqOQqPykmmpCQQG9Pl7pX3GAbqqpsVBGujFw6TOPOpRQt
f5OchX8gZ8mrwn9H3pIXub3kJxQv+W9KFv+Xclu86BcUffR78t/8PcVvvEr1gjdpWPMercfX
0O9xnsmcm6iGOpgc7KeutkkccB6RkeE4O9ljaW6Bo/01AVSVfxFQabSNhkf6FJ2mpPgovG54
YGppiYGJKaeML3JBvrebEzfDAvDx98Q/0A/fwGBuBoWTEJtCTkomaWHhhIptbE1Ocl5/L3sO
7mbrgX1sP3CQ3cdOcMzYnPN217ENTcY76RYx6cnExAYQFeRIdIg7ETHRSq2W1Le64RuAq5sj
rmI/nG6m4hZXSXBJJzltsn2NlvzA5BSTE8OMD7fTX1/Mnax0IlzDsTVw4eJ+KzwtA7gVmUd2
7C08nDw4Y3CWw8dPcf6SOXYuXlz3DsTV1R2bq5ewMDmC6fn9nDl2hJNHTnD0wBEOHz7KyfOG
XHVzJzgjm4LacjLj3YlxP8kN03VYnl0vgOcA6w4dZp/+EYwvG+Fgb6vUUMlrwviSKWZXLLF1
chTAeA0rG2vML5txVt+A08dPKpEsCVVubgKCTIzZdfAIu48YYnzVE9+QTILj8nHzjeWyvRf2
7sH4R6VRVNNOVVs//ZPqiEz3GMRm52Lu4MyB82Yct/ZVoNUxIpHAtGQSbyeQlh8uzp0NNjYn
MTLcz5Fju9m0Ywef7tjPLgMzzL3jiCjppnxARceoOpU6NSqgp7Oezqo8SlIiCHZ35IqxiRir
a6Sml9DRDQMjKuU7JdPcNQUJBDgZYnZSwOL+jazfupnlOw+y7YI1V4NSyKrtom9SoyE2xkhP
J7UlRSSGheB+VcDeiUOc3rsX/ROGGF12wjc8k+yyVnGsfQyI7YdH2qgScBgnvlM3rl/B7YYr
ARGxRKYWklfRSVuviv6hub6TOtOZznSms78MqHbt2sGCj97j57/4H/7rR/8+p0P1zDPP8KMf
/Yg33niDAwcOKMKbY2NjX3iH5IdLqJIrswICApSUn3S5urC2rmFO5HF8DFVvuwCrUlQ5KahS
o5hKCkFVGI+qOAZVSYTwUHE/WDwm/La4XyAey4lGlSY8WWyTmSieE34nDVV3MaqJVqbHhhga
HBOf1Uxuzm0SBAD5icnF1dGOAC+fP1lD9VlAJTWO+vraGB5op66ulOSMJDwFOFnY23HW1BhD
43NcEsBw4uRhTp06xZnzJliIyTUgIJLcjNvUFldTX1LGnaJc0hPCBJS5K4XW52SdjICSk6YW
XLBzISQtn5TblRSVVVJ6O5ey3FSqirOpvqNe5VZWXi3G9rZCx7K5dFphM1k1I4qwZ9uEVp9A
jRjn1DBTY92MdjTRUXWH6vw6suNLyYgqoiq3haHWScZ6xmm600Be7i3CIoLxDvTFTcCwt38A
MXGxZGelcvtWHHmZsbhfu4a9lQPmF80wNDTG2OIKjgLwQnMKuF1XQemtQJK9DfAwWs2FI0tY
vW0Nr61axYLVS1i3eQ0G+ie5KgBULliIS0oUx1lKQ1sLja0t4hhriI6MUorSr1wyw/j8BaWG
SrYvMrxowuUr1nh4hxIvIKG+aZjOfhVVd7pJziwmOb2QW7dr6OydpG9ULcUgBS2Hx1UUVTYQ
Hp2Cq28YFtdDuOh2EwsPP25EhJOal0Z+USox0Z64XDPhkslxjC+c5NyFsxiZW2LvFUTErVJK
uqboEu/XMzbT3FqmVaf7meivo6FUgKq/uxgTQ2xtrhEVk0lJeSs19V20tXfS09lAQVYEHvYX
OH1wE4f3bGbrzh1s2neEg4ZXsPIKJ/pWCSV1LYxOovQblMrnFfm5RAR443XNRlkUEBcSzK1b
ZdwWINXeOz3bQmh4pIfmxlLybkVzzcFUgKkJXgE+ZBYUUdnYpYyTjJaNjt7TNVlnOtOZznT2
ZwPVggUf8P/85w/5h6/M1FA9//zzfO9731NW+kmgkhGrHeLXuFzl9zBaz3R0dFBTU6MUpd+4
cQNjY2NlQnR2diY+IYnCsipF9buhqoF2cdtdVkFX4W06bmfTVphGi5icGstTqatMpr4imaby
ZFpLU+ksTqW7KJ3mvETqchO4k5sufvVncqcsg5rKDCoqMxUl6tLScgpvV5AYl06wfxA+YiJy
sDHF/solZZXenwNU2r38pqbH5kQjp4cFpPQyPiq1jpoorigRk3syN8OC8PP1xM/bDa/rrspx
+waEERmbQXZepRiPdrpa+hjs6FX64I31dohjKyMvO0sZk+DoWEKSUom9lUdZQxstnf0M9gwz
0NpNb3MTg51tig7W4FCPouXU391DZ2c7rV29tAiQ6hiROkMzSuXMtDHRqHzLiOB4vxK1Gxbv
2d05QkfbCJ0tEwx3zwhbzqxGm5gYoKG5kvySWySkJ5CWnU5VTSXdXW30dTXS1lhDwa18cjJy
SUtMJT4+kdjUdFIKS8hpaqOuu4WmsgjyQi5w02I9VufXcfD8MXacP4OB+QUcXOwIDPAjOT6B
4uJiBaKGxkZndaikSGhzYxPlxSVkJKUQGRqGv7ePUkMVJcAu93YhFRX1tLcOqIVCZfPoYRWN
Alzq7rTT1tLP9OTdiuxTAjJ7u8eor+2guLyRtKJqIjILCE/JIquomNb2FmURQ1NNEQWZcSRH
3SQlNpTkpFiybmVSUFlFTWePomoux1i2i5mabQotZVQ76O0oJTMtlBvXHXBxdcfXP4qwyAyS
0goor6gR34kGmurzxNhF4uPpgMd1Z1zd3XD38sMvLJ44AdwFlU3cae5maHRKEXaVDa3bGwQ8
ix8NmUlRAqpz6G5vo7N7nO4+GfmaUYwf6ae+ppAcAbvJiSE4uVjh6GpPZHws1fVN9PSP3d36
SBeh0pnOdKazLxShkvVTUi19XmBgIE5OTpw5c4YNGzYovfx2795NcHAwPT09X3iHOjs7FR0q
WYQuwULKJkigkkvf5cQYHhykeERQCNFB4cTcDCX25k1ign2Vpeuxcf5Ex/sTkXBTeCgxsREk
REWRFh5FVli4Uq+SHupDooCY2Cjx2oRwEtKiSEqNIiE+mmDfEII8QhRxQ5mCMTfWx/DsYUyN
9HFxtBNAVf4ngWpycnwWqOQqPzVUzbQbkQ1wlSa4E4qYpOwpNzQ0wOhAD2P9nUpkQWopdfUL
eBmZpldMxLIFyNDwhACxiZl+eOLzBwcV5fHh/gG6+4foHh1TmgsPjIyrJ78JtVq3amBS3ZRY
9nab7leaL8t+eJOyB97UXHPksZlmyUpzlKkHN0eWUhH9I1P0i32SPQbHBIgxpoGPcXHcAvhU
/eKhXmWF4uDYgHKMsw2Fp6cV5fDRIeEDsp/gMD1if7vE57QritzjDDQm05BuQ27gSZKCLhEo
zuHN7AxyBbC097fQ093J2NCwkgqT2lOjstee3A0BU1IkVBEkHRlluLdfgce+rm7lmuodHFD3
5xseV7eLmWkfIxsWj4gBlo5suah5XOMT6m3E4Ir9nmZI7GuXOBcdA8OMjE7NNX4eE+dGfIaq
v4fpgS4mh7rED4xecX6HBESNiWNDOT/js6ru02qgUnUyPl5PQ1M+t3ITlYie/80ovAVURcdn
CdC/Q29fB2PjrYqPjA+IcyxgeWhQQLJ6Hyam1Q2TFW2tKY1a/LQ4nn6Gupvp625SolDajY8V
oBTQ1d1YQUZCMIG+LvgHeBIZF0VEYhxFFRX0DAwyMjIm+z9r9SPU/dHUmc50prP/C1CdP38W
Y5Pz2NpdxcfXk3lyVZ90qT/11ltvsWDBgtnmyA9DKV3KDsgoVWFhoSKV4O7ujr29vSImGhoa
TGxMBDHR4UpqJy4ynsSYJCXakZmaQmZGsoCjGGLT44jOSCQ6PZXYVPFLPymL9PhbZMelkx8X
Q35iDBnxCUo7mygBUXGpcSSkxhMfH092Wg7pCRlEBobi6+mOv7cLfl7XCA/yJU9M7GqgmlAD
1RT3wdQsUMkpTjWprJQbnxiejVIx0a/u6af0RUNJk05OjKkjQUo7ErVkwdTM5DuuNQkr7y+L
lAUwKKrpk2qwG5+YYnhyUlnSrvQSnJ4DAcWnZ5ocy1YqAt5k42BmVmxNTqt9TOxy/8CIUiMj
28JMT2i9bmquSbH2/sxGLhSoEBAz3KlAgiA5pdmvuv/b9N2NgrkbQidnImMDisK7gLb+Cnor
QmnIvs6dogiKa8sobGmiqb9NaQCt3bdQMB4jE5NKc2QJVv0jA8rzUuFdFtRrtmNWUX0GgDSN
kzX7NMFcC59x5vrwjWk1idZErO5pcyMGg8l+AbESsmXDYSnsOinFSQfEGA4KmB5VxuAuRfcZ
oJLyCZN0ivudApRk9KiBuoZ60jJziYxJJSuniIbGVrp72gVAtTI+qYai2b6F4gKcGJtUGl7L
HoOT2oAvVwfO9gwcUwB/dh+U45xWWgANdTZQlCO+NwkRZN1KJ6ekkPzyMtrFHwFle3FtKuKi
4pqWtVkoja/VLWjUbWi0ldNVd/m0xmcaU6uzhQr6/Z9dZzrTmc6+rEC1f/9eVq1exhtvvsor
r77MvK9//euKDtW3vvUtfvCDH/D6669z9OhRBU4eRoRKNdtrbULRpJLRBbnyr7a2loqaamra
mhSva26jqbGd1oZ2OurU3lbfRm1Ng1JrVdPQTE1zK3WNHUqz18aadhqqGumobxLeILyFtoYW
8fo2mhtblM+Qytt3xG15/R1KqsqUVXcV1SXic+7QL/ZjbGBg5he6durj81IgU1q3U+qolZJU
G797IlKiV8MzEYthpSGvMhFN3+1oRQmUCVNx9VtMa5W3qFeGaUVZ5P+ZmWDReo3WpMcDfO51
U/dPkmg+cObimTk+jc9NuFr7dN/YqfdhckbfSKmpRozDtBznPuW+hKCJGRiaVt535r1nXqfx
CWU79WQvt517XOOa56eUz5mY8bGZ22lNn+YpLaCaUu/rpErT0ke+dlRsO6w+TmUsZ87JlNZ5
mTnHcrw1J2f2PKJV2D3TfHnOJz7jvExpjeuDypj+1LnTuFbfx8m5fZbPTWqNh3pM1OdPuWam
xbFMyeMZFY8PCwAeFtuMKqrv0zPjAHPjoNlJpQ30zNiNzryncq1PfwHXQZXOdKazLylQrVq1
QilIn+3l99RTT/Gd73xHEfX8+c9/zptvvqnoUMmicfnCh7lDMtoixUJlbZbs3dY/PETnyIDi
vYNDSn83maoZ65E+Ku6P0t87pERaeuX24nX9I+P0DYnbAeE9wwz3jWi9Zu51A/0jynv2TY7S
NT5Ay3APrUOddA/2Korhc7/8v1D8bQ46tMFCeUxO0jJFJiM8o+rnptWpmVn/m69hUUOVGppm
ImyzYDWlTPBqn5idyOduZS+6iZlblAl+RMvvhyr1/ekZwBhStpOfOzhznkbnzuO09rnRPsdT
c8/ddQ7/f/qyT2s1cp6BbW2g1YapyRl4nYVDGUGVvQjF8Y8I10DVpAJVd4Ol5njluRmbiUCq
s8NagPZ/ch1Q6UxnOvvyAtWSJYv49W/+l+dfeJb5Tz7KPCljIPv4HTp0SNGg+vjjjxWRRalP
9TCU0u9Nn93t6pYuyJqkqZlfzROTapeprqnJmQlXgJhqUmnzMaa0+5C1I9PqCMikVipsfK5W
SE4Ashi7f2KU3okhuicGFe+TNTATI0yIz5Kr9x4GFNw10c5OwsMzMKUBKu6fiHVANReluida
Nq1AwPiMT8xFvVDNRrg0ESpNJEYDVaMz/58FKg1UaQHVyCxQac7T+GxkZu68qO6KRt71/F8L
UE1pRafuAaqJ2cjdg4BqfAaohsU4qKNUE3cBFZ8ZoVIDlRrY1ECli1DpTGc6+9sDKhMTI86e
0+fM2VMYGZ9j3pYtW1i3bp1SjC6jUzLlJ1f5ydYzqofQluJeiFK4YnpaqReZUuo4xB/vyQm1
T834zB9bdUpkXMxbmiiGGq7mXAtktFx7UhmfTe+oZkFMDWPTSv3KQ5sPtfdBOfDRBwPVtA6m
/lygmlYm9/HPeX5iBry4C6o0QDWpnTKdngOqidntNEA1/BlAdU8k8q8VqKbuBp+56199rJMz
6T41UGlBFeMKRI0qYKVO+WnqqWaBSut6nVRpp/zU99Up5y8CVbo/2jrTmc6+nEB16NABdult
Y9v2Tejt3s68r371qzzyyCO88MIL/PjHP1agav/+/UrKr6ur6/+TCNXchMBcymLyniLnmdVk
0wK40C441kwiE9PKaiVFW+gBPjrjGpiaKwhXA9WYEvV6WED1AFBSamg0k/Xog6Hrb/7XuVY6
bfpBqTatWqTpB6fiNBEOTaH02F11Q/fzzt3bScgY1Ur3TXF37dI9UUhtoPorgOK7gOoBPygm
Z471fqDSRIcmFIgam/EJrQJ1TW3eHPDcDVRjOqDSmc509jcOVMuXL+XFX/2cJ596TK1FJYHq
m9/8Js8++yz/+Z//qUSopLCn1KF6mEXpD3S0CmqnZzSflIlgLoI0OfNH9670xqRqdh6evAek
hrSASgNSE1oTjDo6MSm2GxM+qo5yPSyYmvosoBq/e1vt2py/aaj600ClKQa/NxqjLuCfuK+Q
X7tAfUJrNZq2T2qlwqbvKiCfmjtPDwQq/qqAahaq7tKUunsl3uTsGMxBoQaoNCv8JmZq0Sbv
Wuk3dV8RvPo95xYGTGqK5XXpPp3pTGd/g0D1ySerePl3v+aF7z6nQNU8Q0ND9PX1Fe2pVatW
sWjRIvbt2/fQhD0fFJnShpFJqTQ9LgBocopB8Ye+TzVCr4CQXtWguD9I/+QAwxNDTE6MqNOC
cvn82AhTo+Kx4WEldzMtlbDFnDgxMcW42EYuuZe3cmWhSnu1EmqokpEpCVWjmrThwwYqpXhn
YibyMXo3UM0Wro9rpZn+doFKk/K7F1LUk7mm3mdiDqRm64VmgEreTnEfVD3I74UqzUrDOZia
+vPON3/lQPUAiLw30qaahaSp2ZWSD9z2vpWezC4gmL5n9aFONkFnOtPZ3xJQGRic4vCR/Rw4
uIcTJ48w7/jx45w8eXK2KP2DDz5A1lWFhIQ8lF5+2iv8pK7VwMAA3d3dijZVW2sXPZ0jdHeO
0dE9QEtfL42D7TQMtQlvEfdbaBX/7xzopG+gV5FdGBoYZKC/l96+Tnp6O+jr7FW8p6tb0ffp
6m1TXN7v6W6nt7OL3nbxXEs3nS3q1h+t4vFW2cx2qOsuKYCHAlWzs9LUfcvn7weqUR1QPaCG
ShOhuguoJu+RB5C1d7LeTqnBmys6v1d2YvJP+N3pvL/gfPPXVgN3/758djr7bvkP9XdAxf31
Y1P3S0HAnMSGVjRRI9fwl93qTGc609mXG6gMTp/g/IXTmFy8oO7lJ1N+sgWNbD3z6quvKtEq
ucpPAszD2CFZgC4hqrS0VBH3lIrpsq+fbBScnVhOUmgeIX7xBPiGEhQcSnhMBNEJUYoHBAcR
EhpOZFQ8UbFJRMYlERITh39kKN7hgYQkRhGVHkd4ehT+8X54RlzHS7hfpA+BEX5ExUQSGhzG
dWcPXBxc8fHy5aZUYo+LpLA4n5qaKrV4pkwPjo8r+6ru3zet1XpmSh3tukvsUy3yOSv6OTPJ
jI2qFKHQiQl1i5qR0QFlm9kU56xwqFqkcXh48K7P+jxXpiKxL/Kz5f4ojXbFazVyFFJUVEYV
5a18TnNcD/LZhQFaLh970PmTj2vkLhTh0ge8r2bfpN8bmdS8XrO/s4A9Nqy12OAekU2lhm6C
qckRMa7j96f8FIX5cbVq/PjUnFjnTB2erL1TVqnOppHR0rli9rNGR8eVyOa951ZzjJp9l64Z
99HRYTEOI8oqUfm49ms1x/igL+K9YyLfTzPumnF50Lh+3vWgvp2avW411+vs61Dddz3ffV5G
1b0qZ/5J9fzJCS2h1il1hFUjKKo+L2oalZHlWaFV8ZGyVZD2//sG+sX7TyrR4snJaeV5OdZj
E+PK/zX7qTOd6UxnX0agWrv2U37z218q6b5/+sY/qoFKCns+/fTT/Pu//zt/+MMf2LNnj9Ic
Wf7Bfxgmd0DClCx0ly1nZJrR2toaf79gwoMyCfROwcc9BO/rvgR4eRES4EN4oDdhAV74XXfD
/4Y3N30DuRkYSuDNYHwC/HH398DZ1xUnH0fcbzpxPcQR1yBrXAItcb15BfdAOzz8nbgZFoCP
jw82VvaYX7TExtIWW8urAq5sCb3pT0115SwsaQOV9gBq4OPeyUhORNNo2tCoJyE5GY2OTKqh
ZnJkRlF9RsTzLqBSv1ZOztrvrYGjez/vs1ZKftaEq72N9qR9L0j9KYD7c0Dvz/EHfZ4MU8j6
HaknpSzFl1KTsn3OlJx0RxmdGGR8YkhA1ai6J59WAbZaGV3d/katx8T9IpdieKTC+vDoiNLW
RgNUUol9ZGriLoX0PwdmVaq5xRKaZtlqcJ67JuR5l64Z88+DWXmuPwuktLf9LNBS3keMgUYC
RAM7yuMTk8piDnn80uX/Nfsj5URGBEj2y9Y6sp5qavyuBR8TY3NtmBRpEW2gkhHDqUmldZH8
LSHBiJlxlK5Er7T+PzV9/2N3uc50pjOdfUmBatGihfz0Z/89J+wpJRJkik+m+5YuXcqyZcs4
cuSIopT+MGqoZJSrvr6elJQU3NzclObI0r29vcnKLaCkvpvihk4qG5qob6qhq6WSgZZSRpqL
GGkspreqgL6aUgbqqhloqqevuZbO5graGgqVBrMdzbeF59PZkiU8nfaWFOFptLRk09Rym5a2
GiqrK0hMSMXP+yaezp44WNpgf/kyPi7O1FSUz0YZNCnOz4OJuwd6cqbtzBw43Q1N07OTnJyg
pibmIigyqqAGrukHgNr05362NhRpoPezIOaLANC9UbkHTfYPHpc/DwCnZlZbDiv1bHevylQv
TBCwNS01w0YVUJ0a124dMwNUzKwAlVGqsSn18xofn54b7xmYGlcaGk8wMClgdnp6Dqi4Wx/t
3vMyd01Mz7YdUvv05x7zg87tvZHBB42bNnBp7mu7BtikSO2Y0g5ncma/1PsuLi4mR8eYHp9Z
1MHcQpDpmYbZij69PIaJEaZGxmaBVV6nk+Mzav4qdT3gNDIiNyieH1a3Lpqamn3PKS0fF68Z
FudifPruxx/kOqDSmc509mUGqhMnjrFn7042b1mv+DxHR0fMzc2VOqrNmzezevVqpZ7qYSml
y5WCNTU1SnNk2b9PfpaDgwMZGRlKg1v1JDqhNOFVjdWjastFVRmLqiAEVXYgqgxxmxWJKice
VV4yqvxE4dGocsNQ3RLPFYrHcuPEffH/gghUpVGo7iSh6ioS79ci/vAPMjEySEV5DfFxKfj7
BOF4xRYr44u429hQVVaqgKMmOvR5UKJJa90NVOL9p7sYHOqis7NdgFyL8Dba29vp7u6kr6+P
wYFRRodnJqmZ6t+5ifvzwUaT2tOk8O6NOGnSe9r7pQ0wfw44fdaE/iCgetAFpw162q5J7d0b
rZH3lWbIYiLvmOijdbKP9vExOsW2SoOaWc0wdTpQ3UNQnY5idkXo9BxAMBOhkgA1Io65X0z4
Hf0MN3Uw0TtIT0cnra2ttHR10NzXRXN/N11jQ8q1p90vT0lLTYypU7hKkc+U1j6LfRqbUKfI
pH7T5CBDw91KylaeY+na6T95fJpolXRNyvM+qHzA+GvGTfN+2qlezXiqXzStwJR6fCZnoGp6
dkxQBHKnFJeNuPv7B+ns6KW7R3zvJlFHkMZ66Wmtpa22gb62Qcb6xfgPyMbRcxIMioyCSn5H
htQuY4nKSr1ppdly//AYg+L9J2Z6I8r3HhqbVMCqd1Cc455+2rp6labf8rmpmZW3IxNyjHVQ
pTOd6ezLCVRXrlhw6bIxl81MlAbJ87773e8qPfykZMJPf/pTXnnlFXbu3KkA1dDQ0BfeIVmE
3tDQQGZmJl5eXpiZmSlpv4SEBDo6GsSf03YBPhWomgQoJdnTZ7OL+n1vUbnyF1Qt/DG1i39F
3eKXuLP0Fe4se43q5a9Ss+xlapb+mtpFL9Oy8ANq33mPmnfeoGHJ+7RsXkHXqd1MXbdGlSkg
rLsNurqoKb9DQnIGQcERODo64WB5BV93V0pLipRi+c+K6GhDhabuRXN/eKSPodEmmtsLyStI
Jio6GD8/H+U4vb1viPt+YuDTuV1QSkNdD71d08pkJcFKu7bl3tTcvVEo7cfvb9w8eR9ofVY0
SR7LvRP750WWHpSm+nPrve6tq7r3veRFWdfSQEJRJtHFGcQVFZAi4Davro7q3k66p4YV4U0J
2+PKakzt+qo5oFJkNVQzkDU2rYDUQHk99RkFlMSnE+8fQqCntwLzN/x9uRkTQewtcU4aqmkR
12ZX75g6naiJtshC9xkwUd9XzaZsJVApwKUaZ2Ssm7aOWnLzspQfC2lpaVRVVSnH1d/fryy6
kHAtb2X9oPweSHD/IlHD+77kirTIpCJ8q26WPKauN1PNRO5kaq9vgM6WDkqLK0hOSicqMp4k
8T0oET8w2js7qKsu4FZKJPFh4WQkZFOYXUtxQTsNd0bFDwF5/aujWeqU39BMf0rh0yNKc2XZ
LupOfQsV1fW0dcrvwxSdPYOUVtwhK+c2uQUlpGbkKN89+f/ahlYGZI3htDqapQMqnelMZ19W
oFq2bIlSQ/Wd55/hifmPqGuopD/22GP8x3/8B3/84x8V2QSplC5B42EAVXNzM7m5ufj7+2Nh
YYGlpaVSnN7aWCnmgTpUPZmo8m8w5rif+vW/Ivd/v0HOC/PIf2oehc/Mo0B47jNfIefb/6j2
5/6O/GfFc0//HZXPPEfhI89Q8Ohj3H7uafL+/bsUv/orug7vQhXgLt5bANtAv9IwOSOvmNDY
BFzdPHG2cyDIy5viwiIFHD+rcFc76qABF5VSzDxKU3MNhaUJJKUJiPK15ar1RUwunlfk6C9f
NlWicba29rg43yA4MJHsjEoa6wYZGbo7zSTfU7v25i8pTNcUS39emlATbdLA1OdFpO4tqv7z
a4se7HLfZN9GeR3I45MmbxsbG8kpzMM1whfbCC9sgv1xDAvGNymB5LJCyrsaaZvoYUA1zLCY
zMdnUnazqSJFlHWCwfFhNWTJSb9/hK7CKgqCY4lx8CTgiiO2Z00wPnUGg1P6nDU2xOiqOeau
DjgFCbiKj6ew5A4DfdNzRdiT40ohtgQnGX0aGhpRCqxldEwWWKtrlcYEUHVS11CGf4A3zs7O
CrClp6cr17qEKPkjQkZm79y5ozTqllAlv08akNWMtwbS5ZjI5+8t+v+sc6sA8tS4WlJEgSkJ
KSNKvZmmtmxKvF9LXROlBcXERyXg5ekrrn0B+oGhJGfcorS8hJz0SAI8rLE2vYiNmT3XrPxw
uxZDXGQp1ZUCAkc0QDWhABWTXfS3V9NQnkdJXia3buVyMyQSb78g0jJzFWCqrm0iIzufyJhE
wqPi8fDyx87Rles3/BS4amnvYXxKfS6ndUClM53p7EsKVFLY8xf/+xO+9cjX1TVUCxYsYOHC
hYr+lOzjt3z5co4dO0Z0dLQyCX5Ra2trUyaV7OxsJWIjYcrGxkb5VT/Y04ZqUABVczaq5BsM
mOyi+oOfUPivX6di/jya5v8ddY/8PTWPfpXSx75B0ePfoPAJcfvE1yib//dUPPEV6p55hsrH
5ovtH6PsucfJ+M63SP7v71KxeTEjMkrV04xqqJe6pmYS827jFxbNFRt7LI1NcbO1E7/Gbyt1
Xp8FB9pApX1fpnhuF2bj6WOGvbM+l8yPc8HoGEbGZzEzv8jVq+rjPHniNHt3H2Pf7jNYWd4Q
UFVNf4+KMTFR9fYMKZO0PEESMGpra5WohoxwaE+q0uRny/MhJ2u5rRxTGRGRE7hUtNfArwaO
JMTI95XPa1yeC5mC1d5WTuoSKDXvK+vdJADI/8vXy+c0IKTZFwmT8jmZ1pTbayBCjon8XE0a
UnpnZyeVlZUKUBcVFSnbS9jIy8sjOCacK75OnBcT+gm7qxyzuYKRmzMuUSHEFWaR31hGZUct
9eIcdg6PMDw9B1VSO2mcMQYmR5T/S6AaamwnPzQOXxMrbPbrYybG3eLYGS6Kc2B0wRBTS3PO
XzXjkDhHu86dYI+BPte9QigpqmN8TL2YoL29leaWehqbaqmurqS0tJymxjYlVdbV1aOs2pRA
1dvfRFFJJo7XbJWaQBl5ld8ZeXyaa768vFxx+ZgEKg0wa86lfEwDXnK7kpISysrKlOtAjq0m
2iXHVFvCREmXiseklEhDez1DU/33AZWEqa7GJjITUomLiCEkIJQgAVLRAnKycwuprBXXQ0cr
Rblx+LlbYnTqBKcO6HN4tyHHDlqJHxwx4lptYESmqqfUQDUlALe9sYTMpCA8r13msqE+Bw8e
ZM3GrWzZuQdrB2fSsvMor6nnTmMrjW1dpGTm4OUfhKmFFZev2OAXFEZhWRUdvYNKmlAHVDrT
mc6+rEC1bdsWVq1exsKPP2DR4gXMc3d358qVKwpEycL0xYsXKxEqmfJ7GLIJcnKQE0ViYuJs
UbqMUsmU30B3O6qRFgFUhajiPek/u507r/83pS98jbrH/4Gep79F86PfpPaxRyh//HGK588X
/jhlTzxK9RPfpGb+oxR+41vCH6Hq0Sepevopsp74JxK//xQlq95nwNkCVUcjKjHx3GlpI7mw
kMCYGGwdr2FnZo73NWeK8guUye1PAZWmXknzuASF9PRYzIx3Y3huEyf0d3L09CFOG57F5LIZ
5uaWmF2+IsbyBB99vI5XXlvK1h0niAxPpa9jiOGeYeqramiur6OosEAZj/CIKGITU8grLKGh
UYBSj5iER2TqpY/u9hbqayqVbWX9WVx8IhExsaTn51BcWUpLZ6uyYnBiXGzf2yPet4GqsnIS
4hKVbROT0pToQN7tciprmsSkP0Bf7zD9nd10NNRSWZJPbnYKaemJpGZmkFlQRG5pDdXNXTR3
DTAwMqquCxoapFMAVHVROXlispRppPSMLAoKCqiqLBefe4fO1ia6uzqUGjIJJPLzPbz98AkI
Iik5laysLKKjInDxcMJITMwHrxiy8cwZVh83YNPZ8xjYWeMccoPw1AiyinMorK6itqOPrtFp
pSnv5GzkTS3iqolQtZfXEevkw1W9k5xduR2D1ds5r3eE88cMBPBYYO/igoWDPfvO6LN02ybe
X7kSg9MXiAmPo03AWIuA7uIiMQ45mWRlpwnoF2MszklWZi4lpZVUVtUKCGlnYLSfuuY7YjwT
MTE15ODhAxw/eUxJKRZUlFIhrvlCMX75WblUi9c11TbS09vPyIQ6mjg6KGCqtZWmulrlixmT
kEhYeCTBUjJEAH+SgKCCW7epKK5UtNN6uwcYGRpXCvNlndfQ8CjdPX00CYjNraigRVwfitL5
lEzDDSiF4yOd4hyJa8XV1gFnexc8PXwF8CVTJM6phJmxaXUNYGddHkk3nbA+q4/BzsPsXnOM
XevOc8U0jLSkBqWWSlnoNzXAWF8NZfmxeDqbsX/PNhYu+ogFy5fxyrvv8dEiMZYGRvgFRorr
5zal9a10jkxwp62DuKRU7K0csDQS3zlnL9JTciiraqKmqUMHVDrTmc6+tEAls1Gml4ywsrbA
ydmeef/8z//Mv/7rvyoaVL/+9a8VYU8JV/Hx8Q8l5SfBo66uTolQSfmCS5cuKakwmfJra6xF
NdqBqjINVZQLo+e3U/nKD5V0Xs38r9D8lAClx7+lQFTuM/PJfna+cnv7KQlVwh9/ksLHn+fW
15+j8hv/QuszP6L6qe+R873vUrviIyZcbFHJ9jm9AxRX1xKRkY5veAAOTlY4Wpjh6+xMWVHh
fcvX7719UA2VjMbcSo3F2+IoZsfXC1hay4ptm1m2bQfLN2xj5cqNrFy+maWr9rJk7SHW7j2N
iZ0LWbcyaastJT8uBJfL5ziut5mDelsV7a8dew6wcdcBtuw5zImzxljZ2RPg401yTBihvtex
MDrNySMHlFWYRw0ucMbcAiu/64TnJFLWUElpeREJEWG4WVtzWf8M+geOsHPLLjZu0WPLrqPi
ffXZc8gUa8dQklPqKc4Xk25OPpXpMaSEumJtfoztep+weMNqVu0/yQ4jew5aeOKfWkz76ARD
I4PczkzBS7z/1RPGmJ8y5cwZ8X7X3BUh2NzMVGpL87mVHCMmXTsszE25dNkSG6fr2Lp6YWrl
iLmVHa6urtxwscdKgJTBxWNsPLqHRXsMWLDbiEX7DdAzMsbSyRwnF0suXbzM2TPmmF69QXRG
GR2j0wpQqcYE7PaMzPV/FLAxUN9J1o0IrHec4vTHmzm1bBt6n2xh+9Zd7DlwmKOnTqN/9gKn
hB8+e5bDBvrYWVkSfTOAtNgIAm64ionfDAfbK9jZXhUQdknsqzuO11y5Yu2A8eWryrEmCMDK
LasgNDaeq3ZWHD5xkPNmhkRkJnKrpZak4kLCbkbgccWZcLcA0qNTySkuJbu0mIz0VBLDw4j0
8lKuP9NLZpiJ83zR/Cqmple5auGI8enLnNp7BqPjpjhZuJERm0N9RQtlxbXk5paQnV9EVFIK
13xu4hgYT2xeNT0jM9IGYzLqW8tIYyElGbEE+4hxv2iBm1couSUNtPVPMDKpYnhUFpcPMd0m
4D0liCxXZ8JM7bm0w5Q9S89ieNyf2Ig6xgVQTQ3001+bIa4TD6K8zThrIK7p9dv5YMMePtyy
kU3imty2bT96Ww5jfM6WK7a+eMSkUzk4Rp34npSUlJEtQCvTLZBMd3HsriGEhKdx+06rUrD+
eatJdaYznensrxWoNm3awFtvv8Z//te/8f0fvKCuofrKV76i1FB9//vf56WXXlImd5m+eBhA
pUln5eTkKCk/GZ2SRekyYtXfJf74D3cyXZrGdIg93QYbKHz5B2Q9M4/Kp75G07efpPiJx8h/
cr54bD6Zwm89/QQFTz5B2WNPUPrYU5Q89z3ynxAA9di/0fL0f1H9+LfJe+E71K/4gGlXa1Rd
XUyLP9qld+qIETATGBOIs5sN18RE6ufm+hcBlXbhukzX5CQJcDDcx8U9q1i1dgVvrVrNa8s/
4bWFK3nvnWV88PZqlq4WMKVnxJFLTriGRpJXnElZXhz+toYcWbeQd379P7z+0v8qgqqvvPEO
L73xIS+9vVD88l/Dlh16ONnbEOjpzDVzQ/ZtXcPqZYtYsWIFqzbuYMPBw+wRUGbh70xgQhh+
gV5YGF7gwMZNrF+wiCVvvsc7r7/HK6+9z6vvruCPC9bz4fL9HDnlhMeNXKJDC8iNiCbD3wUf
O330j6xi8YrX+M27f+QnHyznZ0t28fKa4xy18iGlsIzK6jLCfK5zeucO9BZ8yq6lW9myZT/H
z13Ezs6OYH8Bf5GB+LvYcOboPnZu3SQAbS8nzptiePUaRpYOClDJlaX2Fiac19+L/rk9bD68
m4W7zvPGZkPeFTC07cwFjCwMMLpwmIM79rPh033sOnAZz7BMGgfG1UA1oYaq2T6Q4n5vTTtp
LsGYbzjCiffWcWzRZnas2sz6dVtYv2UHO/cexED/PFeu2uHi5Yu/gECpdRbq44Kvqy3WlwRs
Hd7L3p1bOXHkoPLrw8TElOMCTrfv3s9qAcp6h0/h4hNCZHIOnoGhWNlbc+z0UUysLhGdn05G
Wy1hedk4CXi+sFsfw50n8bByISQuHt/oCBzsbTE7fZpLh49ifPQEJw0M0Te2FO9xkaMnznPm
hBEHtx9hy4qt6H26A8PD57hu7U50YBzhIfHiOxSOu08odu5+mNjfwNIrAb+kUqobOxnsa2es
vZTx5lzaS+JID/MgwNOdi6YWePhHU3Knm6EpdYRPXbg+iGq8lZHCZGpu+pPl4InbMUfObbHC
xiSBrJReBrrFVm0tNOcK6Ao0wdPqMPv3buSd1dt5fcNB1umf5KKLg4BBa3ZtPMymtYfZpneO
U7YeBBWUUNPfR1NDI+1p+TQEJ1LoFsnNK964eUSSkFupRMs+T4BWZzrTmc7+WoFqxYplig7V
177+D+oaKlmE/vLLL/Piiy/yy1/+ktdee00BKtnL72Gk/CR4yAiVZpXf5cuXFaCSulQj/T2o
+joYzU9h0M+WxuPrSfvN94l/eh55879K2VOPUv7MM5Q8+yy3v/0shd8W9597SkntNTzxFLUC
tEq+/Sj5T/8TFU88wZ2n5pP/2FdI/e43qFz9GuPupqjaapjoaqesporY3AwC427i4G6L1VVz
3JyuUVJU/BcBlaZAWEbeclJi8TE7gdWpnew5uJu1Bw6yevdBlm3cyfKl61j68TpWf3qQtTvP
sPfcFczdPAmK8BeTuBOW+nvY+vEbvPnrH/P2qy/x8cIFAso2smqTHp9sEc/tPaJM5NddrhHm
54GrzWWO6G1izcqlLFm6nIXLP+XjjZtZtm8H+83OYuZkg/HFC+zZspVPPlzIsrfeZfFbH/Lu
G+/x2psLePujVby/fCvL1h/h5DkXMaGlE+SXgru5JbZnDnBKbwnrV/2Bdz/4Nb98/Xf88JX3
ef73i/nxgu3sNHQkMbeIltYG4kP8ObV9G9s/+oQD6/dhY+POjQBZmxNHRnI8mfFhuNmaobfp
UxZ+8C5rNmzm2FkTBQC8Q2IJi44nKjIcbzdHzIxPcvj4drYf38+ao+YsP2zN5vM2XPULICjK
Bw/3q+KYD7Fy6RbWbDmFo288le19DEnNqRGpMzXjU2qg6qluI9EpkMvrDnHi/fWcWrGDg5v2
cOTwSUzMruDu5UdcbDK5eUXcrqimvLqGmPCbOFuZYnzqCAaH97Br81o+XbGEY4f24+l5nYCA
m1yyuMrWXXt57+PlLFu7BaMrdnjejMLhurd434scEPtvdOUikbmppLXU4J+ejKnhZbYtWsvu
xRuwvmCBT2gY9t6enDh+lG2ffMK+T9dwbMc+DI3suWztK8DMHycXf/xuBODl7IaDmRkOl0wx
P3Oai/r6nDtuwNFDJ9mz+yR7DxljZO6Bk38q/gllxOfXU9/Wx/BANxM9d8SXroKuynTSw2/g
5+7EZQFU/kGxVDf1zhb3o0grDDLeUkZ1QhBJ9lZ4nzbhwkZ9di0+IcbCkwC/YsRXh+aqSvIi
XQi0OYjZqfVs3riMt1du5kMBfvtNjfGJEufT6ya7Nx/lvTc/YeHS7RwytcM34xblbW20t7Yx
XHqHjsQc8j2i8DK7joM4TxFpBXT1D98nTaIDKp3pTGdfBqDS09vJ4iUfKQ2SX/zVz5knV97J
iMGZM2fYtm0ba9euRfb3k0AlC5i/qMkCXVmULIvQZarHyMhISfnJmqHBnk4FqMYK0xgMc6LR
aBfp7/yIiB98naRnv0r6U18n7/mnhD9D7gvi9oX5FH7nccqee5Tqpx+n4tlHyPzO35P83Dxy
nv0K+d/5GinfnkfS/zxCxY43GfYTQNVRzmh3E+W15cTnphMYG4yVqw0XzU2xtbWluPhPA9W9
f/DlthKoCrJS8Lh8imsmxzER72fscA0jeyf0Tcw5fEBMfDsOs3ffOTbp6bPxwGlOXLys1A15
e9pgdf6IAJKlrPzgddauWITerh2cPH2OMxctOWNqxUVLe2wdnYkMDSInLY7EcH8lqqN//Ag7
duqxfM0mPlqznvc3rWPL6SOcuWzCSf1T7Fi/iXUfL2PjohVsWblOSflt2b6XPUfPcOjMZQyM
HARQRhMWVSxgIluJlhjorWX7qtdZtfi3LF72Oh+uWszvl67nZx9t4sWPt7PrnDVJOYVKTVRW
fDTGhw9zYvM+rpy3JCunhJLqBmrrhFeVU5KThoeDJdvWruLt119lx24BDeZW+IbFk5pbTFGZ
ug5MpjG9Pew5dWYvpy5d4ISVN8dsQ7kalEROfROtvXUU3U7F2syafWL8dh+8iGdIKlVtPWIS
HmKsawTV8AxQTc6k/Oq6yPaO5tp+Q8w3HcVq/zlczB0UQVe5ZL+1q08tsDqton9kgvbuHtKT
YvBwvMKlcye5oH+YI3t3iDHbgMmFs+I7EC7AP41rrtfZd/g4i1auZeW6bZy7dBVnryCsnNw5
b3KB/UfEMVqaEnErmfSmasJvpXPVzIrdq7Zw8JMdWBtb4hHgzxVnB/bv38/GlavYs/pTjm7b
L35cBOLsmUJQeA7paUVUlFXTcqeK+rI8KgtS8XO5itGpg2xfv4ZPVq1l2dLNfCKg+KJlIPFZ
rZQ2T1HbNcXgxEzUaapXeCcjLaXkJoRyw8mOyyYX8fMLpbSykaExNVANjY0z0N9FW2UuWUEe
eBqewXTnXvQ+3sqa93dyYLcNzs4pNNQNU1NcQlaoK/5WR7E4vRW9nWtZslmPTw+dwfL6dWLT
UgkXsHzi4Hk+XrCRRct3cuKyPSEZeRTW1FJTVU1dRi7FYpt0zzACHP3wCognJb+K3oHR+zTK
dEClM53p7MsAVJcuXcTcwhR7B2s8PF2Z97Of/Yyf/OQnigaVjFK9/fbbirCnbD2jWd31RUyu
/pKrmKROj1xabmJiogCVrNHq62wVE2EfqsYCVAVBTAZepObwAjI//A8yXv4uGT97jls/fYGc
nwj/6XfI++mzFP7P05T8+Ekq/utpisRt5i+fJPnF+dz61be5/bt/Ju/N71Ow+he0WG5mMs1Z
TLp1TI52cqe5hvSiHEKTIrDzcODiVTNsrjlQVPKngereGg+NjlJlyW0S/F2JDXAnPDZaAFsB
SQVFxKZkERkSRbhfGNccvDhrbMXhc5cwu+YitoskNSmSQDc7LM4e48yR3UqaSUYuZH2PgbE5
Zy5dwdzmGq4eXmSkJFJZlEteShw+rvaYmxpz7PhJNmzfw4ot29E7JyZCFyd8wsMJCAzC1fYa
Vw0vY2ZgiIn+ec6cPMuJE+cwMDTjgrk9ZjbX8Q1OJS2jmgwxgXs7O2FtcoKTe1exe9tCdul9
yrYDYrLcc4KF20+xaq8RZ61vkFVQSn9fjwCmDNytruJm4UBCWCLVtW209gzR2zdAX1c7nQ1V
pEQHYW58loN79Th60oAL4nhsXX24cTNCgFwsCfGxJEaFEBHiJWDFEteAG7hEZHEtooCAzDJq
B0YYEmBQU5VPqL+ALHNnLlt5EZNRRuvQhLqgelKjhj6njD7ZOUxtYj6xNl6EXXYhzsmfkszb
lJdW0dTWqawq07Q8ke8hi8Q7muspz88kKTIEH/drWJoYYnD8MEbnTmNvb8uNG95ctZX1U5ac
v2TOFXsXwuJTyLxdTmxqBte9bnDFVhyDnycZ5QUUd7eSU1tFRHAkNhfMcTezJ9I/jKSMDCKS
45U+llIDzd7QGItzlzE19sTUIghb+xBueIYSFxNPRXEerXUF1FWkE+pnh9HpvezYvFaAzG72
7NZn34FL2DjGcut2Pz3i+Psm1G2klVZIE/1ibHrob60iOzEcZ2sLjMSPpevO7qQkZ1JZ00Dv
0Bjt/YP09veIayuLKF8XrE4f4/imLWxatI41i3Zw+JA1ji5xFNxupKKohMrMaApiPIkLcOCq
5QX2Gpxnn9h/Mxs7pc7MydYNk7NXOH7kIqcv2OEVnkRFWy/ldY3Kwo8Ev5sEibGLcg8k5mY8
cWmFSg3VwMj4fTIbOqDSmc509mUAqlWrVvDe+2/x0su/4pcv/mxOh+rRRx9Vevm9/vrrs0Al
l2Z/UZPF23IZvlw2L2uo5PJyWUcla7TamxvEr+khVH21qDryUVWEM3jzAnWXNlFzYgVVuz+m
bs9yGncvp3n3Elr0FtGqt4B24V07F4r7C6nZ9yHl+96n9sDHtJ5YSYfROrod9jMaZ4WqJlJM
Ls2MjauBKqMwh8jkaJy9XbniaIPrDfc/C6jubYArTUoHyP3vqROTfE0xtc3NNA0MKyubuiUQ
9PQx0T9EZloOnt43MbN1xsXXn/ScbKoqS6goyCI3JVop4I4IDlCid3LivixXQzm4cUNMQDGx
8VRWlNHeVKdsL+t93J0dlciaTGGdN7+KvV8AUbduKaupensG6W7spL64isLkHJIjEnAUYGZu
YY3ZVQFjdi44uvsTm5xHZXWnAJYWMlMSiA72wNPpIvZXDLhqZcgVOytM7d25YOeDY0Ay4SlF
yhL46akJepsbuS3guCS7kO7WfvoGp2ZqclQzrWDG6G2pJSs1kciIMByvOWNl78Ql62vKsdkJ
qPT19SUh+v9l7zvD6rqutD2TSWYyaXYclzjJJLETf4lTnMR2nHGRLdtyldV77733gnqXAIFA
SAJRhLpAQgVEESABogjRi0A00Xu7vZ73fmvvU+65F2R7JvkxzqPjZ/uiW87ZZ+999nrXWu9a
6zrupCci824SMovzcaeqC2n3e3HnQRdaWEFdhwEtLdUoJSCXeisXSamlKKvtYawf8XoyoGLJ
IWXXn57mpboddSkFqEq8i6a75dA0dqG7UwMdgQiz3VlDzqbU8WOlVwgMttF95WTwOpLBxwLg
6+PNtQ9//wDSPoJxJSYOd/LEdANdBOr0dP3Gzh5UPqih97OQW16EBm0X2mBCi1GHmvsPkBWX
ivLMQjRUPEB7dw/adb08xUVjZRWK0jJw41IcvD1PYefe09i9NxienkcRFnICOZkpaKkrRV1F
NpJjz8J7rweWL5qDzR5b4OUZCP+ACETHldKaE8v0yG48loTAbGFJN/Uw9jRxa+H5MBZdtxsn
A4MQdeESkhJTeFqDRlqfOrsNuQSQr0WG48j+7di5ZjXWLlqBlUs3Y9f+MISfu4Ws7PuorayD
kZ4foZOVfypDBq3bwNNn4X/iLPbuO4ADu/YRgPalcTuLSxeTcDO1mIAUAVga7wcNzci9k40L
IWEI9fFDbGQ0sjMLkF9Wj6rmHp5RXf1c9Vdc+tHx6Hh0PDr+LwKqmTOn49XX/oR/++ZjIofq
1VdfxSuvvML5U4yQ/tlnn3FAxQDPP4JDxSxUcpQfq9/H0ibs3r2b/11UVESd03BgoqPN2tpe
iM7iGDSknkRz4km0RIdCm3Ae+nhqCWdgjD9Fr+FSOwXdjVPojgtBx7Wj6LpyBHr623L7NEx5
l6CrjEdXYyZa28pI8JC2nn8HcUnxuHQ5AkHBR7lVIfzsCZSUFH0lQNVfckWTUU+gqZOnf2jv
0XIw1W22oldvgpUlC7VZ0E1Ap7CwGIkp6Ui7m4ey6mo0tzbB0NsJh1kLQ3crGmoqeF6m1Iw7
3LqVdDsbdwtKUFlVw61CrHaavqsF5YV3UZBzh383424+0vOKuVWsqLYBnRoTLCyJNyNqGwQY
WrVoqSIgm5WHtNRMpKZn8+vfJYDS0NoNvcmB3h49ah9UoKYiD/eL01CUk4ic7GRk5d5BZmEF
skqbkFfZicomBpzo5FYLzL1d6GwkINnSDbPBziPG5DQGvBwJASrB2IvmumpeeLqA7v32nVzE
38pAbPJtJKem87VQVVaM5oYqdHQ3oEXbjXYCR63U6vUOaHmuKZZ3yQhdt54AkQUtXTZ00HI0
SHmoZN4UA1R2VsJEruPHAF5dJ8w1bUCbFtYeAy+7ApekoKqs6xD77LCaeJDEg4oyPsbpt1Nx
82YST2WQmHQT9yqq0dat4ZwfLV2PZXvq1plgE+w09x0091reNz0r8kynNtIaaKtpRG9DO7Sd
vdDqDNBZTGJme1JUuuoaUJ5bTAAnG1fjshATn464uFtIS8lAW0MT7HotWmurkZoQiwBvT2xa
ux5+BIyvXk1ESnoh7j/ogYnX43PWxuO1CmGVStBY0d70AMXZ6QRizuF6xHmcCyWQFHYSyQTm
yuqbobEDjW0EvEpzkUkgKSXxOhLi4hFLQDyRQHROaTMqqjvR20VrmUUF2hlY06GjtQ53iotw
t7QM6TfTkJ5wC+nJGci5U4Kye40EohjQbEd+0X2UFJcjIzUN58LDSRkIQ2rqbVTXtqC+04B2
vcDLz6gtv+6FwR8dj45Hx6Pj/zKg+mDQu/j1i7/Ez/7rx3iMcZkYWZyBHFYkeeLEiVi7di1t
qrHcuvT3HizBIeMpseuEhITAw8ODA7aAgADcSLyFkrJa5BaU4X4lCfqmMlRWZ6HyfiqaH+Si
o7oA3VUEuiqLoKksQE9VHrqrc9FFrb0mjzd9Yym6K7PRWZoOTUUWDA250DTloq7uDu5VsnxK
aUjLTsO1mGicCj+JkMBj3G3meWA3gkOOfWVA1X8Gc7FAL7PcMLEsWwpMrOabQSsKIZZZ22ZV
BB5rOpMZBhKYDpaEkRr7Lk+gabFxgKIjcMA0d8b1YaBNtPxYYSLgwX7HXLEMtHXqLEpBYfYN
m9nhWhzYQIKdgJam18BrqNncso33aHq5RQOQSorYemDUtaObQBOzwmhYXwTxvkTwQfdrt9C5
rbxcC+ufVT4fGysu3q28CRaWZNICnd6Ibq2Bu5kMJOvZPTLLp0nXC6upl5dMoW5zMMKAVIeF
gIpFLKfCQIHZaOOgifN+6Jp6O5REnhatRazBZ6HxJTDLrVbMUqWjv3vpM5MgRQGKveNlFKEu
YSPdD0+GKRU7pn8bDRpqOm4tYUoFy/skgzCjBdy9Jo+l1Sagl6UVIEBmksCURSpCzMq+cOAH
KWO8ySi6tCBa2ASawx6am45ePXR0n1oCrRy8sEg8vQ2leaW4eu4y/Dz94HPAF/HXk1BX34Iu
+k2vwcLLt1jpfnnhaIfo9jPYbJL1zQY9gX2HSYvaonzk3UrixcAP+fji/KUryCouQ7PewMde
QwC4p7eVrt8BDc1LOz33LTR+3UbmFpXSUvCagCZecsZi7EE3rUN2TUM7Cyyh8SFwpKPfaHS0
ZqlPdXUd1N+buHUjBUlxiTxlyqXLUcgvLSUgZeSWRrNU908NqNyrBTw6Hh2PjkfH/1VA5em5
nyd3jo65jJTUJDz2xhtv4J133sGHH37IrVMssadcHJlF6P29B7u4nC2bWb1YYWSWSJQl+WRJ
DHOySMtNK8DNW6mkOSfids5NZBal4k5BFrKZNSYnF4W5eSgpyOdJF4tK8pFbQhp1UR7SC+m1
IBd5xbkoIS27sJj9JgW3sxnhNQ0ZxXeQlJ3C+U0R5yMRfjwMJ4+GIJKAVezVKCQnxaO7q4Mn
9nR36/1PN3RBJWR5IRNePNYkNhJ17OACWAI/ikVHau7nUM7DQIrqe+zf6nOZpcaK93LhbXVr
dhF8yOcWxLJ0vOCt2Ky8Nh2JRqmxvtpdzm11iDXXGDBxMGHHAIrg2lcFULn1tb97clqzLPz6
1E0JjIiNFy2W6tPJHeaQUuqLOL7ivYkHXdcOUejz27GzW6K/7WLNYKnP7H5tvL6ynZ8W7v3l
zS7dh2puHX3nRn0/7HMzvwfwe7GJQXTiuQQoTXlI+TiKTeyTXQF7fL5szlZ8txzZtwuQlZqD
8tIqaLRGySIlwGIzS+cW+6GeM3ZODhLtBPTamjmoyk29hcy0VOQXl6C2owddNnHceVJQh4U3
qwRw1UAd8tpi42sX542dn48fq58oBwZAXCcGg4DONi2a61pRkluCkqJSVFRVoqalEa0EPntZ
qSXJVfkoseej49Hx6Pi6AqrFixdi8pTx+HzIJ3j/g3eceaiefvpp/OY3v+HgasmSJTzK7x/B
oeLCn7RmFjHISo+w8zJtNSoqCglxSbgZnYqEyzdwJeoyLl2LxOUbF3Ht5jVcS47DtcQbnLsS
cz0BsXEJPDN4dFIiLicmIiIhCWfjk3AuIREX6T32/SuJ0Yi4fhnnoi/jbNxVXLgRg8g4eu9K
FCLPRiDqVCTiIqKRdSMVZXn5qK26z11qzDrUX3LBrwqkBEmQKGiF/c0tLCYx1w8HKiK4sEIF
UGSBDnsfYKYWNOL37P1+TwZoijBWgymbE1BBEvwyAIEEWASpcfsGK6wr9Uc+t1UCDhzAKEDA
0QdAuvQVfe/JOU6u32OAwsqBiCuAs0mAj3VaUANC6T7E/jicwIiBJttDml0cOyd4kcCA3FcF
AFql9+wPnee+9y2+in2H0h91kwGaCOqk+7dLljMaexufAyhryB1UGXVAb5cRBr1FKYrMkKLZ
alBAmwyoTAogVQFGOwEvvQaWni7oe3t41ntm9zQp423nQEpuZoddmQdBUPWJ91kcM76+2bkN
ZtESKCVYZZY8C02oUWOGrlMHfbcW2l4devU69FiN0Ag27ha19LN2Hh2PjkfHo+PrBKhGjx6J
P778Er717/8qcqh+/OMf42c/+xl+9atf4Q9/+AMHVCwPFSuOzIDQP6pD7FzMhcjqmrF6ZcwN
WF5SisqcQty/k42iO6nIy7mJvKIU5N/LQH5JLgqYqyInF0U5eSjJz0FpAf1dmM/LnNzNK+bF
jjMKCpHFyoUU3UVOYTbn/6TfvYPbBJgyCvKRU1qA/MI8OkcByu+WoK6wBu3VLZzXYjHoYTKI
BWn7C9eWC9k+FEw5oLJIuVqDROsPASqHVgRVgggObIJsoXL0K8BdABqcAOhh31O+LwEMtSBW
AJUCqiRZDKdQlC1VXFDaneDDxoWsXbJeyFYV5/lcAE4foNS/hcf9e4BdGUOb5Ni0SWBAbn3u
U3UGeZwV4W53A0fye9L7kACDbP1Sj39//e5vvvsbd0GxnjktU+K9WSULoFVlJUMfC5sCplSg
3KFu7Fo2ac2oeGDKfCouTTUoldeNTTUGIvSGBGgM0vdkkGlVmnPs+/RFWj/KmBsZoLIprk1I
7k4R3EPpv13ql8kFNKtB/qPj0fHoeHR8vQDVrFkzuGXqhV/9HD/56TN4LDQ0lLvgtmzZgnnz
5mHKlClYv349Lw3DLDf/qA6peRLMGsSysBu1OgjMhUFAy6Rrh97YBq25HVprF73qpfpxdpF0
bGVcFzPnK7F6Zlba9U3UDPSZ0cbIvjrYLVpYzEaYTBYYzAL/zETaudmih1VP19FYIPSQjNDQ
Zm60c+4NA3r98aPYe18GKF0AFXc5qd0vTDBZREDFGgcsEqCSwc0XWES+imXMBWypAU9/gMru
KhCdgErlarJL98EBFbNUWPg92LjwhPPcXwCovvK6kO5ZPo8aQMqGPtfzO/r9na0fQAU1kBH6
AiqrQwW43ADVV7VIqq2SMqDiwNMuuhgF1bW4BVCylCn3KwEU+fdwaU6gZNQbFNDP1j137Soc
MOe8QbFYOt2OHCjbrJzz5rCwPth4P9jaNtFzyJrgcAO2Lm5ZV8DmOg/S+Nlkt6q0vuR+KQBf
vB6LQDQ5BA6oLKooy0fHo+PR8ej4ugKqAwf2Yf+B3fA95CXW8hs7diznTQ0ZMgQfffQRBg8e
zIsjM0D1jyg987CSEqLVitXGc3ByrVki9Gpp09XQ33KTNVqLqqk1XbtMLhYMnDDrsAlKORJI
UU82FpNlt4nvm0XiMiPyWu22fvvIBadUt+/LAJXC6ZH5O1JpDyPnoTCOUP+ASgQ2lv8VmHK1
XFkkd51VuYZLs7qDK5nbI7vl3NxMdtEVyYCUyWGiMTbQ36Y+gMrVhfi/P2Rw4sK/cuNeCVAB
Qc43s6usQiJ4UVumbCpL1BcDKvvft7Yl/pLMJxMckifVJvaJAVKzw+IEVDZnvwW1i1jtKpbm
FTK3jbuObeIaV9JTqP4TXF26srVJsTzK/zGEZSEAxfogOJGSsm4Ed+sY+uXtKfMl2JXfufYH
Lv+2mMycn2ii67KsdhaH4BIY8eh4dDw6Hh1fV0DFOFSz50zH1GkTMWnyODz2jW98A9/73vfw
k5/8BC+99BJ3+S1evJhH+f0j0ibI4IRpqepIOoekpdvtom1ADZR0UtNLbglGVDbwUq5Sk97j
7g0GyMw2CCyqjkXEmaTUAVYRNBmsRpjsBp70UHFFCHIuIrtT0/9fENJdABUjQFsk0CT1Uc+F
uk6MoJPAjmCXCOSCvV9A9WUcHtfvSsR3NjoS+d3dNefCp3IHVWpAZXOS2NnBQJSJ+s0aA1Ui
T+nLAdXDLFb93ZcAFf+LC2+Zx2VXPuuXnO/C8XIFVLJlyCQDp68AqP63FjZ3QAV5HVitnOBt
khr7m1uKvghQubl4vxBQqUCV8/fO3ymuRgaMqT/sOWDrDmoLEq/lZ5GiHK19gTizOtnEqEcx
eAB9Aa4gATa5P7yPgovr1MVF2V97dDw6Hh2Pjq8poGKJPVnJmcef+K6Yi+o73/kOnnzySfz8
5z/H73//e7z77ruclP6PslAxYrucx0l297GkmOx9o57e11InTSpXEqmxJpafRk+gyUCAicCR
iT5nIecsvJs1Hf3NXXoWujn6TnevHdouDSzdBKg0dOP0Wws1FsLdodegy9TNXYgW7j4UQRxz
QVh5KJjwhVa0LwNUSoSb4lYRBaaOW9gYMCFQ2i+gEsGQbG1xBx5fidTNz8FI71qJ+G5yRpbZ
vyDqz+6MQIM7md0uR62ZCLRqeesDqGwqTtZX7etDvqdEkclRkXZXQGWVLT+w9iHNi3whEbzI
YEyQrEJG6VUBDYL4t1VyY8pWPfc+fxkgdOdbOexugMriBFRGPoYmsX9sfVjtCoFdvm85erLv
2nJamWxCP65pgXH80A+gskhNBFTM/W0yC/w5YmRxXnqHKTeMqG4ziKkQeN9Uc2uV+E82C48S
ZPMiBg+ooiwVUr3K/eiQRs9h4wqMTbC6fa6yXUng69Hx6Hh0PDq+roCK5aEa8M4beO4nT+MH
j38Hj7Eafhs2bMCiRYswadIkjBs3juehYikO/hFRfu5kbwbS2traeLLP2qpqNN6vQ1dNE7QN
rehpaEFzdT1q7lej6n4taqob0NLcgaamJjTU16CutpK3+oYaNDbTe60dqGhqw726FlRU1qKu
qgFtdd3obNCjqUGDmrp2FFbcR+mDMlTT75tbW9DVreVJKjVWCww2yxdaqL6qlYoLV26BsKpc
fqwxwU9jyFxm3HigjryzcwAk81eU6C/BParPlVujvi6UiDqLlKLB4mI5cQIguET8iW4au+t3
VUBJBFTMumLgFipmrRIjxtwjB539VfdLDUzUnC3O21JxoNRcJHcLFdQARwZUsPTjElRxqASr
xP2SLVQWVfSiyBUSSfaqa8nj3wdMyVF6rvwt+T5cxtiuSithFdeCq4XKyTVyt1D1OzYqUr6c
tJO5p1kSUQWUMEBltrhat+RoTTgBlWwhstLJ2NctVjgtVA4xrQIHTjY3QMXnWQK5DpMUIalO
kyGOj4Xu1SLACaik/GHsMzvP3G6TFBnWYSfJXry+TbnnvsDVyYWzuYE516hDN1ep0pxndLH8
uR02VeSnHP3pHpnp6EPM74ekD2caEkEK9pCv5zyHzEdzgmVX5UwVjOHof68R3IySLi5f1fPS
N5DF0Zf/B7jtA+rz9XMde997kM/tfM6dnLwvUlCc537YHmt/SPtq8wo3jqPrHtr3fIpFVXD7
vVvro3y5G4lV53NvfebRLZWNy9pzu1fXvVItJ/CQ/dThdv3+1gj6ygHB4bIGlHFyWF3H2cWy
7jy3+t8uz4hqDB42Zl9HQLV+/VqsXrMca9augMemdXiM8aVYUeTJkydj5MiRGDNmDAdUXzUP
lTuRW90BRmpnbkMW3Zefn4+TJ0/yTOmbNm3Ctm3bcNjfB36euxF4cB9C6e/j/ofgd8gHnr4H
4BngjYNBvvA+ehC+AQfpuwdx1M8HR6ix3/kG0PeOHcTmQ7uxk77jdeQofPwC4e8XhCMBx3E4
4Ci8D/lhn5c3PL29sHvXDmrbOHnMP/AoTkReRvKdXBSWlit97i8XFbOo9UdaF9eaQELNBKvF
RL818bxAdiaEFMFi5mR5CBJ/i1nidA5uQZOFCltldt5UmjxfjIJIIrarNjI4w/+tKhepzT1H
lJqXZDdIGa4NXEjJvxMczvQG7g+ck9xsl0L6JeHstuGqNw48ZCN1gjcLF8zceiJb5QQnZ0ud
GwuqDZ65cwHZRSTw8VXqvblweSQnqCoVgE1ym4mpCZyfiRYWyfrC3Vl2lw1CBm9yHiznRmUH
pHtwAlY4UzMo3DQZ2Nl5s8oRc+pxkeeVzR6tE3Y9Ow+usBBAEefX4nAtLWNXE75VwJbxlPQ6
DU/6ys7hdBG6KjM8UazZyhuU9Atmca26RaralWvapHF0kuFt9J7RoUe3tZuvXUhjykCfVdDT
Hemkc7tzsqByuVtERcPBeF0EIix2/jzJ5YtYZKzV1sUVEgaOZRoAGw8OzORyQ3Z53lTKhRrw
KpGRgpRBXnZLSjUdWQJU6oue+sKalfEwxdStdG6hb5BHHxc6JHcyA870e845FHmHgkNScNT8
RCVVhmS5lNa6zY0bqpRGUqXbsEkBB3JT5y0TVLnaRCXDIlmsxbEQJO6m1cUqDHGsLToIeoNL
3jqHw5mBHw7XYBc7KcU2u54n32UWUMEm7VdS3jMWBGRiQJslt7WJ11S7haEG5oI4n2ITJAVc
UAC3whFVlA43cCjn0lPAq8OFDwiZViA49xBFmeDntzsV2H4AtHweQXCOsU2V/kYdlSwDRNcU
M67R0yKIh8v+bVbSxFhV9yuuDW6FVs2FQltha5PJFbtNmSt5n7Cp6R2sgoRFUKJw1Qmm+Vgo
0dCC85myuSs+bI8w8ldBosn0BzbVlSj4fFr60k3k+zdL7f86qPoyQLV8+VIsXjIfixbPw7Ll
i0SX3xNPPMFTJ/zxj3/kxHSW2DMxMfErRfl9GaC6d+8eUlJS4O3tzS1g7733Hi91w9p77w/A
++++jg/e+ys+HPg2Br37Nt55520MeJ/ap+9i4ND36HUABn4yAB8OehcffzCQtw8+HIh3PnkX
bwwegL98/gZeHfou3v7sM7z3yVB89OlQDP6cXgd/jIEfvoe33x2Ed98ZhL+98jpe+/Of8Nab
f8Xb77yFQYNHYeqcZTzHlUaj4cBJFtTuXK/+Gndh2qWFKAjKQhU3Qfa+UXSp0AYDebEaqPWy
1NQkpExGAmBGmAUTJ85b1QJTLdzsziSQstXKJuUJMko8M7PykFn7AVQEpuy93DUIbrkRf+fc
dPvPg9V/fim7m4UMKpeV3ZmGAa4cIYWA3y+gEu9LLSxc0jhY4bYRSFZPeYxs7tGV6jxWoqAT
pPEyqwGVTbLOSNYXeWMXNxK22RrEvqryYImbiWRxVCe7lPhRznQJzvQDZmnztDpUbkH13Mql
bzh4s4juPSnburjhQomM4zOlLgptUbnPZMGgAClxfTKLMFvbikXGLjYom7CZN3Zem4WBMzF6
Vs5nZaTz6Ah8GoxmMb2IBFRNBKgMDi0HXDLQsvOs+syiqVUI8XCzbCgWPQVQidxG2GVnoASo
OPdQwzmIzH2rDlKBXHbILJHtFUAlgQiZS6gizAtSGK4CNjnAsHOwpqf7Z6DKQP2xywBTFjK2
ftzmLqBKBlQmDv7M3EWu5aCKp02Rk87K35cAlZV/36QAKrZOdPSHlje7aN0WXPOXWd0SyIrc
TbEJguvaF3PgGSRLrPS53NSAigtKo+j2VUC+U7EyM6uuHOgjNcFs4PNso7Hin8kKIJ83cfxk
Ac9ng1ntCTAziyqLwjZbTdw7YLTbXQMaVPw+NkZ2yToq3ovFCahU0bGiNdDSB1DJYIhFg9ts
Is2D7znsuWB7AiuRZTf1tSSpI6Ltquu4gyk4039YvwhQqXPhCXYVoHC4JDMWuaAyCDYp9AZB
cIIp1hhlxM7SlNBYOiwS/xEOl/G2qlPoWGyS+16sqqCnxkpn6bnSJitzZnEdW0WlX6BGU8SV
WRuNkQAj3/cEeuat9G9mcbZK1Bk1mFIAOFTXVxewl/YBm7SGTdK4fZ0B1YwZ07jL78fPPSW6
/BghXeZQ/elPf8LHH3+s1PJjGcT/XkDFLsxSM0ybNo0Dtueeew6PP/44nn32WbxMAOf9Tz7C
wI8G4f33B2HQ+x/ik48+xecEiIaOHIEhY0fhvY8/IKD0HgZ99B4+/GggBn08EO9+OhBvDR6I
14cOxN/GDsLrIwfRvwfT94bjE2qffjIEHwz6CG8P/AAffjwK7783DH95+Q289MJLePnF/4ff
v/giXn35r/j0oyE4dMifl8dR56KSrVIPA1VO64xdIiHbuJAy2R3cpWLjPBrGTTFKplI4eUqS
EGALmVkHTAS8jHYzj4Jim5Pd7qYlKWDK6VqQAZVJRc5X3H5wJsMUF7VF7Itd7Icz8WM/Zly1
6djx5aRyF9O4S6LQvnZdd0DlKmjdARWcgEpw1aycNficYfkimHG4JjtVuV9sKoueM/O3VRwb
OPujWFNgVSxRrpu3bKEy9QVGgqvrxgmm4LLhOjdaabOFU1uWdj5u9bFJTc4D5rJZu0RkOvoS
1lWFhmUOo0IQl+CsoOSGMnGLExxyXUQRUKkBqEVlPYVUZ9FMmytzB9tla4+0buwOZrnQSIlt
3UC1C6ASQau4odsk64SKMM8FvV4CKRYpyENloTL3tVDBobJmSNflQJFH9ErRltJYs+fMaLJw
C5WJJUnlljib5Da1OS1UX5iCpH8LlVmyUgmywiLPt6Q8uFiopPGTAVUvfbGXWeSovyaL+csB
lc1poeoLqGQLlfS5BARsggqE8n3IqKwhPl52pwLAShlxi6bFed9sLE08aMXM14bdobZkmMXx
dXEPq8aKWfFJkWSC2SxYnM+yS7CCjTmTaT80uAEqVzoDfy4VK7q7e1XqKz2qNqszR5rISTRz
ZZZ5FVyepX7mV22hlvPlWR3u7YsAFZzVGlwsVM7qECbpHE4LlfN+BTVYYfdjpn3BQJ8baWxI
ZjmMJiXfG1TKsFMpdybdZcBWS/Oos8pWMYGPAxsP8ed9g0bskPcls7I/MaBvl9199ocAKvn6
fap2/HMBqlGjRuBPf/49vvf9b+Ob3/oXPDZhwgSMGDGCgMgn+OCDD3jahJUrV3KXH/vh3wuo
kpKSeN0+dp0///nPeP755/HCCy/wa61euwahp08iODwEp4MDEXH8CK7Sa2zwccQEByP6OL2G
BSM2LBBxYf6IO+FHzRcx4X64fMofkWcCcOVaCCLOB+Ji6HFEh5xAfGgYroeEIIp+d+FEOA56
HcXGDfsxasQ0vP7q2/jjb17Cr37+U/y/X/4ab73+NrZu3oby8nIlRQLre3+JPvsbWP6YMSI6
q7tnExes3a5aTLLbQ+2m4SZVGxcWAhdIYu01RpJnC5VfVw49dwdUQl+BbVLyXemkrOwqQKWQ
zUUtGYLKTagAqi+ZX7W/vg+gcs0MrxCiVdGDD/1ccLjwMgQ38KFsSKoM3Da1FVAZH2sfQGV7
CKByKVujKqOiBlTOvppcSt84hbYMCl1zScEN0MmZ061KqRvZlSm5BW1y9KFM5BYkMCXWMbTL
pXcckluWbYysO8waYZUSfTKLEOMomY0cNMk1Kb+ME8ieU95oszQKBhdABWnjNbkBKtfC0lZ6
jwGqXslt4Jwj0YKnpTuyuK0Bu6JYyPklOKCys5qWOhJ6Zq75mplSwuhWtMnbSNkQOPCwurq3
3V1+X7D+mEbfH6ByKBY1h5TKQUojoXIJujx/9v65SkoiVyk4Qgx6EK1PCqASrE63jxRtapPT
aUi2ZF6rUkkbQ/NCa4Px0/oDVM511dflJ3JyVIJZSm0hu/xsKmWL89wYLYFZKGW3rWR5sKst
5mpeHUThb+BWPbNiPZXn007zabGKdUkZMLepn3PebIpFlq0/AymfrD6mPO82CVhAUTDULj+7
27mcqUJcOKiqJpjtzv1U4itxQGg3Oy1v/VSWcOeROfltDpcqEmol0IVrpvYs2F05RK77txpQ
uaXBUXFFuWWRW5EhWp3k/HI9BvGRk9x07nukwEG5E2zJ11PqzhKopZHgz4DVzc3L0w7ZrK7P
hVv6Fqg4fP8TQPXP4vJbsWIZFiycw1MnzJw1FY8dJ9Di6emJ1atXcysSK468bt06njaBlYv5
ewFVTEwMTxw6depUsLqBv/71r/Hiiy/yBKKRF89xYOFwdJGcqoOjrRiO8gw47iTAkRANx7WL
cCRdhyP5Chw36bs3T1ELF19vnYcjJQKOu1FwpNJrAn03JRaOzBtw5KXA8aAQDl0HbJ06FORU
wNsnGOMmzcaA9wbipZd/i9/94fd4e8C7PKEps1CpXXksCvFhpHQXAcWEV28vXUfPNXvZI2+V
NnGzxZlzR1lczFzLiiZbOkgD7VAAFfrLMQT3iDz3h9vKLQxWnuuqV8rKbnUCKrfNQgZUMocK
6pIn/YAnNTleneCxP5Jm3wiz/hi0VidZuh9AZVMLCkWjFUSSt2BVPnNyCQQVMFG7K2WysVXJ
AG5TtCG3rPBynqU+/bT0A6ig3KNLKRq4aq7mhwAqZ5kbixRBZ3Xj+chgSrYaGEXhYxdN/ILe
AoveBrORFRVmAsiZekDOm8atnEJfTdOhrrfocPJUbPx64m9YNK1GI6BHa4Oe1i67By2Nr4GB
fTjPJfDfaKhpOaeNKROCTMznVictk2Si69ylcgBcAJaYToSefVs3F8I6Ukx6aNA0VtW9OWQA
ok6iq1rXiuATXT+Cm9tZ3vQ5N42uYbEbuPXDCQ4drvxF9+fQrg4QUVtS7VK9RLuL5Vgu42OT
+uMUkM7STn0qFEjBEizxqUFqNnmOBKcrWT6/WVnTKv6R2/p1XteZ2kP+ntO1Z5dcvqKLziqI
7jGocpcp3E+Dc7y55Yp+o+XNTn+z/hilvVwvcm0EMfmyka1VHV2J1hRL4uwwGESLuUPkmtok
N5VBEK1hDEiK0dc2l+fQJXmxzT3BMFyJ+IKqFJVSIUB09TIZZbQSoBJEK5qL+9wtglnmZ9lc
mt0NWEFy17lyP/uzeLkCNHkunZUN5D1Zvl/ZY8CtilKEuOJetcuAivaHbro3Dc22gRVvF3lr
DNCaSdFiMphZYtl7JhVvyygVUrdI+xQDVgabiacZYi5Z9rxwjjALJrGoxojlsqPz2WgezSzp
MO1HdqsroBIEtQfBHaz+cwGqHTu2Ydv2Tdi1exu8vPfhsZ/+9Kdg7Re/+AXPQzVw4ECsWrUK
t27dUrhEfw+gYiVsmIVq5syZePvtt7lr8ZlnnsHo0aNx7SqBIGsnKbQVcFTdBG6EoPfQetQs
nYKisSOQN3gwCoYMRtHQQSgZ9ibuDXsFZdTuDXsNJUMHoGjYu8gb9TYyP/8rCge/jepxn6B+
1hDUr5mEzuM7YLl9lcCOFuWF93HgYCCGjJ+Kvwx4A7/4w6/wy9+/iNfffhPbdmxHY2Ojyz2o
yekyt8r9Xvm/WXFaq1FskjBXEpAKDmURK4CK7Q16tqlo6N8aLlDs0qbiDDlXafx2V9K1C79J
8rlbOZehVwJUOhdABXtfQKVYauQM2X2iR+x9iwULDwFUKn6RbL3hAlXayOFmMhdUbkaXKDnV
BqYmq7LPrBotTNoe6HQa6CwGnjDVLlsHOdnf4gaonGBKrkvnJKirIgXdLW9yX9UbmzpPl+Dk
v3CB+AUuAPUm6WKhUmdoZ8LVrgKWEgGcgSkrc3XZeghEdYtcPLZxaune23rR06IlRceKHhJy
ekFlRVCBJwGuYIr3VUm7oIKAgmgJYGlImls6UVHRiPv3m/CgvgOdPXoCVa6RfVzo2gROOrZb
u3gfRTI8abhG0V0opvDQcEDF3XiKu0QURjK5VwRU7LvtdH8t6OltRXVLK+41duFBl5mAnAyc
XetdOgRHP9GmsuCzSNeBk4gsPUtGkxatbQ2orr2PuoYa9DAliAkWKfJRnYHeJdWD4LQaiDnO
7FKwgVTCyC3SSuH5ySRjxWVlUlw5cvAGd8FrNAQ4tAQm9TRqJg5STFKgysMAlVWJSnSSpZ1r
1DVfm8O9FqNbRQSzYOQWSj63VofL+JpbtbDU9cBQ0QZDFQHoDoHzaxi1wcA5ZzZ02anPgom7
ehnnzeHo4fsQ4wMywnpPtxEdrTq017ahtboJnbWN0LV38GAeuBGzzYr7zKZYaPsQzu2uQtoZ
KaeKkFPqelrFoBxBUkxon2Y0lm6tDnqr1QmozK48H8DpSpSLhjvXVl9AZfsyQOVCG3AFanId
U2e0n11RPgQ11cElgS6tbuaupPtAYw+MNd1orejAg8o2/uw2tXejs7uLBH8XtL0adHVq0NZl
RJfB1ZWvY1ZtqdA6pCAqmXwuuqpV8sMijRM958YODerKylGQmYWa+7VobdZw4Cxz9Cx2N6+M
G6AS/okA1ezZM11Lz3zzm98EI6YzkMOKI7///vvcWsVcdcxS8/cCqrS0NBw+fJhbqAYMGMBr
BjL+FIsovBYVCVt3Exz1BXCknke3zxqUjRmItJeex82nf4bUH/4cWU8/j+xnfoK7zz6BvB//
B/Kf/Q8UPvMd5D/1NPKefhr5zz2B7B99C4VP/Scqfv447v3mByh6+6doXDUU5os+cDRWoDA9
Hbv2e+OzCZPxl0Hv4Pm//g4vvPJb/HXgm9i0ZTPq6+sf6tZjgMrdjcLeY9GLum4SBroW2mjq
0NhUi3sPGlFe342mboFrAAxY6aWHgj/8nVranOqgocVobKqGTd+Jzt4e9BrMYnSWHIMjSm6e
Sd65obqamuXiy4LD4EweKuWLUqxDbvwAuLgFJE3JPepHkJI52uT8TVYVoFLnTnKNfhEBlUHp
hwtIEVzDuZ1uLNfQWqAvoNK0kbBtaURbexM6NF3Q2KxSzTyruKnY5NxVUDYkWZs0c60f/FW0
FsgRjyanoFG4aa7Zxp1h766WNCWa0cW96NqsbtFYNlUpGJeiyapafZAAFSP7mmydMBmaYe1t
hLWlDj0V91GTmYucG+m4FZeOmym5SM0vR3bZAzS0tPMoWploLrtGLRJnhr2yz9RgymbUQtPe
iMYHlaipqUJuXgHiE9NwJToJMXEpSE7JQnpWLjLv5qGssgb1LR3QGCCdi0ZR3wtDVz2doxbd
JBy7u+hZ6LXxck4OGwF79IgpQQjwOt2gIhhxAh27CL5sDTB0FCG/KBNRSazgeTricyrxoMPi
dGnZnaV7+mr9sqXVIgkoyb0rc4UgCqPOrlbkF2ThevxlXL8Rg/zSUrR2adCts0Cjt8Bssov8
IZVSJHJRnMlzwa3BYloOqyRkoQItfcPpZUBlcDaogjKoNdeSQGqsQ3NHE1p1HeiykuLAyfES
gV5VAcAphGVriSsnyiW7vWzVVoMtGUgpvEO5RJMUwmJRAZYegrr5NSi9lIaSC7dw72oOGu/W
obtBA63OzHmfzE3EeF8GbvFjYIqUY4HWrbYajbUlKCnOQ3paBm7Tesq4mYms5Ezk3MpGbkYe
8nNKkVdYgep2Lep6Teg02fheKbpfRUAljrETXLhUdJAAkCu/0aoCVFZxbzDTWrSSYmLqgr6r
BU0NjWhobEW7Vs8Ff/+ACtJYmyRenEkpwaXuj1qBc9YUtTtdxPaHrwvF0i0DY9Xn7kqMDKgg
RTWzJNbatkZ0VFej6FYOCm4W4m5qMXJzKlB87wHKK2tReb8ClbTGi7NzkZ6cgcSETGRmkzLR
ZlR4t9yVb5fd4BIgRjfs2mYYmuvQW12H1uJGtOS3oLNUA2sD9bCT9uQHXchNTEVk2CkkXLuB
7Mwi1NfSPqAhuWik9WBWAUA3i6I7vePrDqiGDv0cv33p12JST1YcmXGnGBGdRfexvxnQYaT0
6OhotLa2/t2A6ubNmzxVwvDhw/Hmm2/yAswMVLGIv7iYy/QcNsPRkA/HrRPo3jUX9z78PbJ+
+jjynngGlU/9CmXf/y+UPf4Myp8gwPTDb6Dyh/+Kqsf/HVXfe5LaM2j40XOo+d7jaPjOd9H4
g2/j3g8ew90XHsODqX+D6cRWONrpoc27A9/DARgzZzbe+nwQXiRA9YvfP48/vvZHrF67CtW0
MPvjm8gJSd3fZ5FTHR0daKmvQuq1MJwP2Y8tuzZi3pq1WL5lPw6HX0UaCYW6dp1IomUPjNaM
tpJq5EclIDn0NJLPn0NqXCyq60iwtXXCqO0RrREQTeGc32G1uwAqq6qwrJIY1CEms1S709S2
Zde8Iq55YZQadGpAxXMSmUSzvM0kFda1u2haLoRNpdizXRIasuvRGV2kLnzsUszYJarGCais
DifPo7O+Dm00zg2NNWjpakO32cQ1eIfAwr21UiSlKp+Uw5ktnQEpvRQpx61nTIDbuzmoku00
TjDXfy6gh+WTUYMk9yZrsa7Aqq8ly6YuHeMQrThW9MJkboWxtxbm9mqkX7mAhLATOLXfDwc3
7sHWdbuwdbs3dh4KgncwbWg3U3mx8JbWdgJiovVODlc3WOFK5GfjRoKwt60BZXmZuJ0Ui1Ph
JxFw5Dj2efpROwxf/2AcPhoKH98A7NnriV27DyD0ZCQyc++jucsEIwEPfXc3emrp3/cL0dbQ
hPaWXmg7ScBqWeQRrWOhRwIhVmmNgYMQbi2Uw9h5bjEt7JpS1JXfQNS109hFitcGn2AERCQS
WGyB3qyKpLTKLhy41KV0gimLNOdwWjtk4r1F4LnrbiRG49hxPwQE+eNaYjyKqmhNdevRqTHB
YLRyHo9Jqs5gUAd7QOIncrK5VbJOuXLp4Malc7qOTYqiATlyVMUhrCwqRnV5KWpqK1HbXo8W
fQd6WV1SHsTRP6CyKdxAKPfpDNCQIr/U9Rf7RKRKCpMgB0NIAQlmpzvV1mxBTVIRYnaE4Pq2
UCT5RCH/yl3UlpJi00H7mtUikpolC4dDoOfKyNZsLn0nHqkJp3HhTCD27tmBg14+OH6E8WQv
4EzIRRw/eha+PuHYdSAI0am5SM4vQ0k9rSM9ix4UeYRWB4E2m0FJMaAAcXcqg5srXnH58Xul
Nagj+aJvgK2nDh31lai8V4H7FQ/Q1N7Fk0O7RKHZXNeUVUmDYZK4cVYXcKfOhSeorc+q/dJl
/5OVSiUgw6TwWAW4cjDVkcGyG40rKGYDdJ3NaKgoxr2cuzhz/CyNcwyuxxFgzSlHSXkdSuke
87JIKYqPR6i3P7w378O2dfvg73caiSklqKdnVcs8KHYp0lnQi0qQsRE99fm4d/s6Es+G46J/
IHxWHcCRDcdw0TcWxfFV0FQY0V7WjvToRIT6HUHo4RBEX0pAYX4Fmpt7+bPUa7DxCiYu6Tbs
/5yAinGoZsycgmHDB2PQhwPxGLMgXbhwATt37sT06dN5Xb/ly5dzQPVVSelKXiDV3wyItLe3
IyoqCnv37uUuvtdee427/FikH/t3VORp+m47HM0ZcCT7o237WGS/9TRuP/cYSp97EjXP/RTl
T/0E955+Cvee/Q+UPPMvKHn6MRT/6F9R9MR3UfS9p9Hw45dx/9svoOZbP0PjE8+h/Effwp1f
fAPl415Bb+BaOFrv4QEJD39/f0ycPQsDP3sff3jlt/jtiz/HX//8B2zftoUnGXVPieD4koSf
DFClJMdg3+YZWDB7ED4bMwivfToIL78/GCNmrYB/eBRuZRejvp2ZXjXQN3XiXkIGTmzwhMe4
Odg5bxUCvQJw5vxV3Eq/g+62JtE0bdGhva0FdU3NaOno5H93d3WQVmiAxgzuCjHyDYW5gujh
6iEBbBB5LM7QY4H7z3t6GU9Lr2ihLHu1wDkvFg522zt60NSmR2unCZpeIyw6EhomavQbh5HA
h57mn7na2jvQ0dyOrnYNerv06O6kV/qtttcAvVHkjBmNemg0TbCaSLvRNtB3G+hzHb1ng1bv
QC+1Hr2Zb8RyfhmzXsez4jO3gL6XztnTRX3pgoaEm45QUGtLFxorylFRmI2C/GyUVpahqrUZ
Tb2d9Lsu6mcvBF07tKTd19ayZK8NpCW1o4Wu3dTZxAn7bRaROMs0MLuungB8DWzUz9bOHjSQ
dtzTpYWmq5tHw/FElPR/jckArdHA8yoJNpkQbofdaKbh0HJuYVsXzU1PG41xO/22CyZTD415
LydSs1Dj7t4uVNU+QHNnO2pamlHR2ISG7l6+kRmkiLUexhWyOVR5tmySptiD7qYSlKbH4bT3
XnjMmI2pg4Zh+ufjMXXUDAwbQQ/w5DmYvWIdtuzYjfPnzyMvv5Cu10DgvAtdeitfK506C7p1
JoVwzIE6zW9l0V3ER56ktbsO61etw8KFKzFl+gJMnr4IS1ZshMeW3Vi7xgNzZy3EsGHjsGjZ
Rpw4fx2l1e30TGtRW1aBqsxUVN1JQ9GdPDyoaoG2neaT5tHS2wIbCTGjlsBvVyvNvQ6t3e24
30SAgeZJz4Aeq3DQq4XF0Iaa4lgUZF6At/9uDJk2DR9OWYDFOwNwOiad5ruFwDStu7om6Bpb
YKXxYwEgcvQSI+PrDT3ooWv1mrvQ0EVjTGuoltbmvZo2XkVBZxTHtrqmHIHHfbFm/RKs27IW
Xkf9cSrqCuIzaW3dr0ETPc+tml406qxoJGDRQOuvQaOndU1AgUCug+XEsnTxFCfd+l40Ndeg
rbURWo1k7aRnQK8V6N8W7mJhzyxbC8x9YrR00zz3kpJkILCs40EvWq0e9dV1BGzzkRQXjVtp
ibjfUIH6blKwuul+jfTs2Yyw6zWwMpc3PcudXS1o7WhEC63tXk0HjKRcdBlFSwP/Tyogz57Z
3vZuep5of9DZ+Gs3AW67tldU2rSd0LY0wKzr4ftELwGZ3l66ry7qv04UgLpaPXLOp+DwJA/s
H7IMAXP3ITbwOu6klqDyQSs0BiPPNaXUUrXQ+TuL0FUZi7zEAAT5LMPyhSMxeeJQzJ41Ax7r
t8J7/1Fs33II02esxdCRyzBs7HKs33cMh89eQeztbJTV1YtufRqjju4WEs4daO/tRjPNe11r
N+qbaa57LNySZtPTc0pA3m6ww0Dzxp4/0WUlwGqm7+iMHFC1V+egpTwNdSW3UZWfifw7uci5
W4j7NXXoomfZYRBgbKNnuqENXS1t6Ghv5vtHS1cDOmgddxo70KZrRVtvG9p6COxqdNDpLVIl
D0EMoFDntmIVCOQUFCoyOIusayPw3kH7NePyWc2d6Omopb7T/dHe0NjYTGNq5iCKReL1GO38
N0ab061vMetp321BQ1UJslPicDniLHbt9cWWvUdwIioRxbVttO9pUUWKQu7Nm0g8cx5e9DxP
GzQKn/5tCFYv3IGr17JQVtONRgZ8LEbRYm9p42DY0JyPotTzOOmzBVvmzcDikZMwfdAUDH9t
ImZ/uhoRhxIITJGsqDdxa+OpoDCcDjqD4/4ncPzYKcIMySirojk0S3m2bI4+QQR9FdKvN6Da
unUzDvl54+Kl80hKjsdjjCTOXH0sZcJbb71FG+gweHh4cA4Ve/D/XkDFOFSHDh3iiUOZhYpd
75e//CW3UMVejaQFTUKu5iYciX7o2TkBBQN+jIxnH0P+499C4Xe+i4qnCSQ9/TQBqu+i9Nlv
Eqj6NxQ/9e8ofuIHKP4Bga3v/w4F//oiyr/xS9T/4L9Q+uS3kfWLb6JsvASoanNQln4DXp57
MWbSBLwz6E384eVf4fe//hne+MvLXwlQqblk8nss6Wl6WixCAlZg25ZxmLViIobMnowBoydi
6IxlWLfbD37HTyM6PhGlxSVou1eFOxGxOLpkO7aMW4x9S7Yh0DMYZ87FIDYxFRXFuWipKER+
VirOnT0JT19/7D7gjX37d8HvkDfCTp3F5fhkpNwtRSGdq7asCA2lRagqquC+84Y6ekgaaRNl
gspioo2xA3WN95GalYz8klzSyBpoM9fyjbmsuAAx16JxIvwsAsMiEXoyChEXLiM1PoFb8zrK
C9FEIOZeejJuX49B/OUruBJ5FRcvXMH5Mxdx/tQFXLt4BUkJKbhX3oLqui5UVFSguDAd+dmx
iL92EiGBvgjwP4zTp68gOjYD6XfLUFxRj1oGLBofoKI0H9npqYi7noLICzGIOH0Wp0+EIPjE
KURcjUPczTu4Fh2PtLjrSI6OwM2bsSi6X4QHNO4PaFOpKs9H6d0U3E64jOiLpxFw5BC8DnrC
95AnPA/uhn+QHy4lXEdBfT2aND1orKdxu30Fd6+fQFJUOEJoswkIu4DgwBMIOnwEgYFHcfLc
KVyKjUZyZgbKqqvRTUBYQxt6S10d7uXmIS0hCVfpvk9TX4NOhOJo6BFSRkJoLM8gMeESjccV
3IiLoo0lEidPhcLnsC98AgKwx/cQdngfgndwOM7GJyG9vAYV3Qa0kODWW52ASjS9sw2uBR01
eShOiYHv+tWYO3g4Bv3hDXzwl3fx0TuD8dlnYzFt/gpsPXAQR4+HIuDoEbrvABzwIW30cBDC
zl/Czax83K9vQysJU7vCwbAx0g4qC7MQdyEUezeuxroVa7Bg3koOpqbPW4H1m3Zj74FD2Lpp
JxbPW4pRIyZj2aqtOHv5JioatGhr06EspwB5V6OQeekCX39lJQ9QVUJCqKoRurZa9DSXoTD7
FilMZ3HiDI01abuHw4/i6OkQOk8sLkffpM3nFspL7tBv6LUwGkdCfTBi9ky8PW46Ri72wCav
4wg/F43ggBCcDAjG1ZPnkJOUisb71egicFVf8wAlxQRGkmJw6coZhJ0Lxl6/A9jh64udvkew
0zsQpy7E4XZGEWqq60mIZsA/4ABWrF6AeSvmY5nHOmzYvx9bvH3pN4dw8Kgfgmn+LySlIaGU
BFKrBg+0UmAACZz6yrtISbqKyMtROB52Akf8D+I4jXvkhVjcySpHUUENKVi0Zun+rl2Jputl
crBtJEFf11iJUlqv+QRks3PuoKioiL5fjNRkEnpXryDiZBgSbsSgtuUBCe92PCCwVlZehILc
LMRGRSLq7CmcORmCU9RCw4Nw4lQwYqKjkJV9h0BYJ+o7SFC3tKK9qhI1OTS3587hiO9hBBwO
RmRUHBJp3PIybqOxrBAmOndTSQ5uXbuIi6fDcTT4GHyPBcE/8AxCz1xH3O0SPGg0oel+F7Iv
pCJ07n74j/NAyDJ/JJxIRmZWBcrrCVgYxILXCuPTSopxdwF0VddQSspxuN8irFs6AhPHfYRJ
E8dgwfwlWLN6BxYu2orR41dh6OjVGDdzG9bsCcLxyHjEpeciNTuH7ikTcfHR/D4PBwZgh5cn
dh70o2coEL6BJ3EuMpbmPBOpSbeRcC0BMZFXkJoQh6qKPAJVHbBazWhoaKJ9KA9Zt5JwO/4s
Uq4GIelSEOIjwhEdcQkJsckoLL3HBaOJlKmKvDzERNBeQCDb13cfvH334lDgQRw7eRThl2js
r5xHZMxlXL4ejeuxN5ByKwNF+eW0rppIIW0noNROewVTOJvQVleDlgfVaGtsRWeHBu2dZtQ0
9iIzvwJR15Nx4VIU5w5fv3oGUeeDOSgKDwlFWFg4rsYkID2nBCXVzejQi0EhBrsTUNkIaDJr
fWHWTdoTL/DnK+jcZRy5eAOxuSQHtBYe0GHQ6aGnfa+FxiDOPwzbpqzA5PenYOPiPbh6WQRU
rQYbzzHH9htj9316jmORcj0Qpw9vxO5V07Bo7AhM/XgERr85BkNem4S5wzxw2i8JNQV0TwSo
ysseICszB4n0LJ8NjYS/73G6hwtIy8pDc5dOTPrgcHc3O/pkS/+6Z0pneaiYZYq5/RiP6jE6
2P94Lqrf/e533P3HMqWzWn5fNcrviwAVA2Ysyo8BqP/+7//mgIqlTmBRfjeuXSaNU0OgpwCO
5DNw7FuKuo9eRvnzP0LdT55D/VM/Re2PfsHbgx89iwdPPYWaH/0Q1T+k18efQ9X3n0f593+D
kn//NWr+kwDVkz9D8ZPfQubz/4b7E1+B5jgBqg7aIHJTcMjXE2OmjcOAD9/ES3/6FbdQ/e21
P30lQCXnpVLnpmKDmpURj5NBa3Bg3zSs2bkQ87euwfhl1BZtwPzV27Bs7RYEBAYhLSkJlRl3
kRB4Fl5zNmLrpDXwXuOD4z7ncOHyLVy8koAbly9wIRfoux9LlyzAsNHjMOjzoXyymDlx1vxF
2LLfB8cIoERcTUBs5BlcPxWG5KuJXGvMy61GYfED0pzbSWvvpU3lPlLSY2lj8ELo+RDcyU+H
RksPf2MNf4jXrVlPi2EBZs5fi4XLN2Hb5l0ICziC1MuRyI2/jISTtNHt3Yada1Zi+7r12Lx+
C1aTtsOsFjOnzMLqpSuxf5cnbdi3EBOXiWvXruHCORLmQXuww2M+pk4chpHDR2Du3JXw2OJD
AjMSF0mDSUhOwY3EWETR5hZyLABbN+/DimWbsHzeQiyYPQNzFiyGx44D8D1yktZNEI567YP/
ns0IPOKN+FvxKKyrRX5lGeJjLiA8YC92rV+MNYtnYdz4URg85DMMGfoRPhvyPibOmICNBEav
Z99Fekkhkm9E4pT/JgRun4d96+dj3vI1mLZkIxbOW46Fs+di7ryZWLR8IVZv3oh9focQFR2L
gsJiNNTXIivtFk4eC8SODZuwYvFKLFywFHMWLcCsRdOxfsMi7N+zBocP7YDvwe3Ys2s91q1b
glmzp2Lk6BEYPGIEPhxGbeR4jKSxW05jdvRKHJLK61DGyNdSdKhIgDZCMLVB01SKexkkOM7T
ZrhoIW1swzDoz2/jvVffx8fvDsXwoRO4JenQkSCcPXcBO3btJK1/DkaNn4wxk2di/or18A8m
kJeew11aVnlNM0Bl6EZlXjqunzmGXWuWYv3StVgwZxWmzlyCBSs9sPcggcvgUzi43xcrF63C
grkrsH2XP4HTbNxvMqCehENeagbSToUjKeQ4kq/dQFJ8JrKS8giw5qIsKwVZiZcQGuCFtasW
Y8LU8Zi7YgEWblyGhR6rsGzjNqzcsBNeBDBjrp7H/fzrJPwuwv+4F4bNnIq/Dh2Dd8bOxIR5
q7Fmwy4smU+/mzIXK2YugO/2fbgecQWZbA1dvYZToUHYuHEpFi6djokzx2DgkEEYMORzvDdy
Aj4eNQuLVu5CcGgEkglQXCeBuHevB+Yunoop8yZj6pL5mL1uDWasWoXx82Zj0pzJWLJ+JTYc
8sfeM5cQnpaDtMpq6I0daK8roOudxP4dGzF/wSIMHzUegz/+CCM/H47FCzbhyOGLuHA2Af4+
Ifw52bxhPcJCA5GXn0nKQxUys9NwkZTHUHpeg0NDEBERgYjzF3CM9sUQP1947d6KcHre8sty
UNlUgYy8NPrOSRz22Y/t61dh44rFtO7mYv786Zg2fTxmzJxISu8qDqQjb9C9pd3FXVICSjNS
cCviDHauWIaxw8Zi/PjZmDJjMXbv8cR5UlZSrl1AOe0JOXEXEeq9G+tovQ8bPwbv0Rr9gIDz
6Lmr4RFwEgm5JLSLGpESkYrwZX44Mn0XQjccJ0CSjtS8GhQ2dXLOEyOn22R3jqWDAypz5RWU
J/ngjN98bFo2DONGvouxY4bT8zAfy1duxbzF20ixXYMREzdg0oI9BGhPIiIuCzdo7Zw6H4mD
B72wccNq7kYZOX40Bnz6Kd4dOgofj5mKMbOWYhmtnX1eATjo7Y/9O/di0bRZ2O+xEdcvh6Oi
MhcPCMzcSslA4LFQ7N66FaFHdiLMfwNOHNqEUN/dCCJwdiIwHHFxcRyQ190rQsy5cHjQWIwZ
wegv7+LDwe9h8JjPMZrkxdwVi7Bi01ps3rMTO/bto7E8QNf2Q3joGQInMbTHZiCTQGwutczb
BHRiryDh6mUkk+J0m+YlKS0flxMyCJxFYes+H1JYNmOTx1psW78Em1bOxZzJ4zBh1ChMGD8F
i5auwbb9BOzP0hovrESXyQGjIPIgueXN1Ivqe3kEsknpPEFzT3Mdl12C+HuNKO6xoU3Ka8X/
M5Ny1tCG6mspOLHWCytHrcS+Nf60bxagoo6AmVlM06ExNCI/PwZhx7dg07oJWDbnMyyY/Cmm
j/gc42nfGTZgDD5/axrmjtuGYL845NxpRn2TEW1aE08QWpp/HzGkuHgfoDk5eAxXY5Po/C3Q
WOx8fQjoC6jUoOrrDqjGjh2Nl373osifYu3111/nWctZjqhXX32Vc6kYoEpNTf1Ktey+DFAx
YHbgwAGe64pdg7n8WGPpGeKjLsHRQw9iYSYckUfRuXoq8l9/Htk//jbuPfMDVD75FO4//ixv
lY8/jYof/BCVP3icGr1+/ymU/+DHqHj2BZQ++V+o+CFzDz6Ju089hrQXv4myGa+jJ2w9PeRl
qC1I45YL9oC88eEbePHPL+BXv32eV4ne9hUAFS8mK4ght/L9MQtVdkYCgnwXY9/uydjquQq7
Av2w40gYdh05De+jp+BJmjI7/2Gv/QRO9mHX3OWY8/5YzBg4CatnbMbencE4eykFgSFncXjv
dhL0i7Bs7hTagEgADxmGj4YOx3C2sCeMxvwly7HtgD8On7yMkNMXEebnBf8tG3Bkjy/OhjCt
JxU3U/JoUyEtt70ROTm3EBTqi7Xb1mC71y5E37iGjs5GNNXcwwkCMrNnzsHocdNJ6OzA9r0B
OBFyGjeiruBu3FVkkFYWTiBmHW3e82jD3bxqNY75E1giIX1g70EOKpbMW4Q1y9dhvcdB2miO
Ye/+PQQsN8Bn/yps3TCLQMp4zJkxHQsWrcPqDV7Yvi8Ie32C4H3oMHwOHsC+7czdtAzLCNSs
WbUdvjQ+4YGkEZ6+QNpgMi5dT0N4+AV4bfHApqWzsHb1fPgGHcLFW8mISIiFrxcJ5jljMG3E
IEwa+SkHncNorMaOH0L39TlmEsja6eeN8ykpiElPReRZf/htmQWvFaOwZ80M2iS3YcV2X3ju
P4yjB/1xJMAX+7z3YLnHOiyk9b/Xxw8RUTQWqTd5jrSNSwlETZzKBTwTUIEnQ3CWNrZLUSdI
UwxCcJAnNnsspXEdi3HjhmDU6KHUn6H4dNgwfDZ6LIYTCJ2yfC1Wex6C36UYXM0vQ3Z9J3rs
UmZjHrhggKGtGmWZCYgK8oHPxjXwmLcAC0iYTBs2GTPGzsX0ifMxecJsAnXLsHXbDuzYsQNL
l63AtFlzSVgtx+ZdXgg8dRE30vNQ+qAV7TqrFEUqJSzVd6AiJwXR4f7YQUBn5bxlmDl1CSZM
WcABlZc/aZonz8F3/yGsnL8CMycvxLLlO3Dw+EVcvpGL6OupOB0QjFMkGE5s2oSjtCZPh17E
1dOxOBMQBr/tG7F340Ls2bQSu3d4YMOW9fALO4LQK6dx6Eww1u/2xFQCsXMXLoHX/h24dO4Q
LkX6YbfvNoxbOBfD5y/G3M27se9oKM5fvI5DXv5Yt3g1po2cTMBqHvZv2YNAEor7tmzFkrnT
MWbUR/h8+Hv4bMzHeGfoIAwaOxaDp87B0EmLsXzDARwJOouY6HicOxuODRuWYNqccZi5dCaW
b/fA9sN+8KK53X5wL3Yc2Iw9fvuw+qAPZuw6gGWHQxAQdQ33KnJQkBWDc6E+2LRmCaZMn4OP
B4/Ge28PJHD7GcaOWoodW0Nx7HAkrf2j2LGJCaZV2LltHfz998Mv4CC27d6ODSTct+3ZwxUs
tifeunkDEWfCsXfTeqyYPwtbt65DxJWzSEiNxakLYTSvBN5mTMKWNcsR4LWXwOMxBNP+sn//
dmzeshZbPFbT2G7Eok27sMnTD2fCQ5F5PQqJp0OxZeECjBlK+8z0pfDYypSe67hz6wZSrpxC
8tkjiDq6H3tWL8T0CaPwOYGWv342GH/4YDD+NmIqpu44iPCbubh5txLRZ5JwdNFB+E7diWME
qKIjMnAjrxp3m7vQbhFD/i0WOYKZ9vGOPJjKLqM83gvnfBZg6/JRdI1PMX7cKEyeMhMzZy/H
+KlL8fnI+Rg+cRVmLNmN4+eSkZb/AMnp+fD08sX82bMwcdxIUow+xaDPPsEnY8fh04kzMHTm
IkxasgErt3lya9V+ZrXavhvblq/AzuWLSdmZj53bac3t3YM9pAx4eh4lBccHR/22INh/LcL9
PBDivQ0Ht+7CHo+dtH944syJIFymNbl34wqMH/oh3hvwGj744C18PoLmlfa+KQtnYc6KJVjm
sQGb6bx7vb2x/4AXdu/che2baZ43emDVurV8HrZt9cDGNSuwdM50zJs2GYtpf1y5ciPtjUew
42AwdvkSwPOhfdLTC3t2bsEOUgQ9ltE+NJcUoGnTMWfWfCxdtQEbdnrDO5CA0u0iNDDOIkt1
Y5dSnJi6UZqTRvuRD4GbPbgQcZoUxlKk1PSiglEkWDUBu8ScY/mnWrpQFpGAkFWeWDV6Nfav
PYLrV3NRWN6BqnYdmoy96LG1ILsgGr4B67B06UgsWTAcq5dM4f2aTfLh07dG4oO/jsXoz5bQ
mg7Dtbg8FFe3ocVk4vNfW9GIhKgkHNx3mOT8YVy6Fo971Q1o0zBuosHJ4RP+OQHVlCmTMHTY
Z7zqy9sD/lvkUF28eJGDngULFnCgwxJ7Mu4TK0r89wIqliB0D20kQ4YMwcsvv8zdfcxCxUnp
lyJFUnrpbTiuBqFz6yzkvv8i0n71LWT97Bu486N/Qc5T/478J/8ThT/8TxQ98R8o+SFr3+It
/6lvofD5J3D3v76HvOe+i5yffBvpv/hXZLz5I1Sv/AT6iL1wtN1DWXYKPYD7MGzqOLz+0Vt4
4ZUX8fPfv4A//fer2Lp921fmULH3ZaJ6Z2cncrKSEOa7DIf2zobPkV04ceUyIhPvICGzHFl5
FbiTnQd/Eurb1i3F0kljMP2jTzH0lffw8Z8+xuSxBJB2hSHkfBK8fI9j++rFWDVjFKaRZjR0
yKf4aPgI0pLGYh5ttkuXLcSG7aTVk2YVRA9IGGkwwST8fdYvhzc92P5eh2lyz+LMhRjcTs9E
cUk+aWCX4HlwJ6bMpwd29UqEnzvDibl1FUUIO3KIP/Az5yyF5+EzuJaQjar79WirrkZTHmlb
V88idMc6rBg/ArNHDseBbduRkpiGyvI6ZJDmHkQCdcuajVi5eC3GTViKeUs2Y+36Ndi1YxUO
H1yNg3tI2K9bCA/abNZt2IM1m3ywfL0nFq/ejuWr1mM1A1Lzp2Imjck80op3bvdBcnQMmmuq
0NGtQ3O3BQVlLbh6NRF+pL17LJmOJYumYrvnDhy7GIEjZ05i49qFmDR0ACYNGYjJoz/FuPEj
MWUmCd3F07BgyTSs2boWh8+EIYI0yGsZqTh/ygeHNk3BkfVjEXxgNfxPnEXw5Zu4lXwX93KL
cK+0ANcTr2Lzvh2Yvngx1m0hrfzkGUSeO439OzZh1rhxmDR8LNav3ISIyCsoqS7n/IqWjmoU
lWTgzNljtCHNxGefDcSHHw7gAG/chLGYOHUaJs+dhzmr1mLV7v3YG3YKYYm3SKuswN3GNvRK
qSw4D8VmRE9NCdIuhuPguhVYPG409q7eiC0rSPiv3UMg9BBp3d5YR/9etWQF9WUlFi1YiOUr
VpHmuxX7fP0REX2DNrxmtOgFdJAW2mtx9AFU1bl0/TNHsG/tYmyl+1myYD2mz11J2v8O+B0/
ibMXonDsEIHI5R4Y/ukEEoYrsG5nIAJOXkdQ8AUcJMDjO3c+/OYvxOFdPjh++DRCfE8SQPPA
/DHDsGjS59jtsQIhBIAvx1xCZkk27tYW4kpGEnb5H8O4aQu5lWfxonk4QkAqJHgftnltwcw1
y7CUhJX/+UjcyivkfLBL56MIPO3FzPGzMGPMDKynNbdj3WYsmzEDwz8eiOFD3sHgYe9gxOSh
GDJ5DMYtWoxpqzZh+vJtpEiEcnd2Qnwyzp8/gY0eSzBv6VSs3bEaPieDEUmgJrUwBzfv3EJq
BoHcpChsCwrESDr/eLrmluBQxMRH4GrEUfjsW48Fc6dh+LhpePfj0Xj7rfcwaOBQjBq2EqtX
HoX3/pMIOnwCEadPIzzkMDbQ+p8wYQgH+SPoOZ5FQHErAbUzFy5yl19FWRGSY6No/Bdj1sRR
WLx4Jo4E++LMpRM4dNQTK1bMw9hhH2PLqiWIuXCKWybKS3NI0Y1D1JUzOHxoHwngZfhw/DRM
XLQS3vt2I+FsGJLCg7B/Na2dmUvgsfEALkWnorGlG8auVhQkX0bU4Z0I2roUmxdMxZyp4zGC
BMLfho3AHwYNxZ+GTcTwTXtxMDYNV1KLcDb0Os3zAXhO2o6AjSG4HJmJ2Lwq3GnpQadN5G4Z
Ze6mpZ322gLoi6JQft0Xl/xIgK+bgVULZ5BiNRNTJs/E/+/uS8Cyus5106Zp2p6OaZPTJmna
09OmzdCe05w0zWlyMrSZjCZqnGfjjCPiDIKigsjkCIgMyiizEyAioOIAgjKITIKgDCIyyTyI
r/d7Fyzd+fujpum9z3OuPvv5N2uvvdY3r3etvfe3xk2ciU8/m4S/fTwSQ8dNxwxLO4THpuNs
TiUSJW5ylXyyTOBGDh2MT4Z8hA+GCBibPRfjFizFpGVrME/AnoN3IPyiDiEoeh8C9wTA33mT
ioOLZwwXcPs3jBw9SsD6cqx39IDXTl+Eh25HVIgTovwcBVCtwcalK7FiziLYiow2O9lJfLGF
1YwJ+PS9N/D+O3/BCNHX9DkSc62XY5XDelg7Cmhzc5PJ3C6ERkUgZn8kfH08scJqPkaPGIIP
B32AIcM/wcgRouvB7+NDGVTf/fOf8O6b7wg4k0ne2JmYKbboJD4SEZsi9pSEyLAAeAktzrYL
YLdY/JfxQQDVrLlLYLFkDVZtlEmKTJBzBbjwu9A+QCUTo8565J9PRaifu4BEB0RGhCA0/jRi
z1cirwG41nMHjd39WysJoLp9+QoyAvbBU4Dr4pFLxD93yMTyNM6cv6LSk1R1tqIBdcguOyHy
3AYHZ6njYAlnR4k5y5bDYpIFhrw1Cn/5z8F4940xWLJ4k3qiklVcjis3G9DU04GqsutIPngc
W1287gKq/DIBVK3tqGvtuPfFthlA9b/h34MAlbe3F/x370K46CIu/gAe4Yviem+9119/HR9/
/LFaoeLXecY9wP5RQMX0C25ikHwJnathL7zwAn77298qQLUvMgx3eppx51oh7uQm407MdlSt
GocLo19Bxnv/hmP/9QQy/vs5ZP35V8h+7Xlc+PNvcPHPv8bF1/8NF954FllvPYMzf30GqW/9
VEDUc8h4+1c4P/gFFMx6F7Uei9GREoQ7bbW4nJ8HDx8fTLKYrR4L/O5PL+EXL/4KL//pP78U
oNKP//jL/f/ys04hxs9eQNVS+O8RYzqchMTThcgqqENldQtqa27gYm46IoJkBi4zQqtJ4zH+
b5/g/dcGYdR4S9i5BSMm+YJ6LyDUSwamTdYycxGAMnsaRslAPGLKFMyZOxNWSxZizUaZ7e4J
R4A4WqQAjYMBuxAps5Q9Mrt2E8dfYb0GK1avg9MmF7UB9Lp11rCYNwtDxozDpHkL4RMUgvLy
clSXFiIqyB9rrAmCHBAYkYzsguvoYfK+lha0lhbg8ok4xHq6wMVyNhZNGI+1S5fDZ4cvwkJi
4LMzABvWOMJ68XIFLlZab4aT2x547vTAbl8XBPuth/vGBVg0ezymTZ6EaTMWY8qsVZg6xxYW
VvawW78Rri4bBRgsxdIFsyXQzsOCuTbwlJnbofAwHE48hmNpF3AkNRdhkbHYYi9gwmqmAlDb
/SQgHE9BdHKi0LEJG5bJADt/IqxkcJg+YzKmyYC30HI6FiyWcgGEHmHBiM3JQ0puNuL370Kg
yzxEOM9AXMAmRCedQML5MhQVVKKuogY1NeU4cTZFAp87FqxahY1bPNQ7DadOJCkAajVrFiYN
E4ArYMDR0R17woOxP2k/Dh87iIMJEdgd6AX7Daswb74M/ALsJk4ai9ECiGZazMX0eQtgITJc
7uSMraHhiEk/i/SqGlxq7VT70/XovFrchqi8EGcig7FdAvryqdNgb7UK1otssWLJOtjZuGKN
zSassFyJJQJoLGfNxBTRzyw5n2+5BEtt7OG1Zy/O5JWiUqaq1wRUtfQato7hV0gyy63OP4P0
QwLON9qJbG2xwMIaE6dZYsbCFbCX2b3HTj+4b5BZ7ZylGD10CmbOsoHjtgiExWbIYH4cgVu9
Ebx8FYLk2LPFB4E+kQjziUbgFl/s2rgWnhuWY/O6VXCwXwlHNwd4hOyCV4w/nPfswApHN0yb
uwwWAgI2OTniwL5AHIgNgquAiMlWFhizYC7mrbGFs6engI9IODm6qEeP08bPxpI5olOZCQd7
7REg54jVi2YLyJGJyqzPMGXueIyYMRHjFi7C1OX2mLFsIzZuC8beyMM4czoDSUmx2MFHxK6r
sT1gm4CpIzhTnI+i6lJcrixEWfl5GWhkpi0AepbLVizw2I0tMfuRcioeibH+2C73WcyZjqEC
Ct77bAoGDRmFsaNmYdyYNVi+xB+bXUIREbwfOZlpOJ92FK7iy5988i4Gf/IRxk6aimWrN8DD
OxgJR48rP7xyuUAAlUxk7WTiMvtz2NktRfi+IGVPQeF+cBD5zZ0+AcvmzoC3uxOiQ/2xR+x/
2zYndbhuWotlYiPzxBdt3T0RsscXaYcicG7fXuzd7Aa39e7w8hZ/Sj6PGw38WKAW5xMjEeS0
BE4LxmPZlM/U46YPhw/Dn4cMxx8HjcJro6dj+BpXuBxORczJiwgLSkTACh/4zpcB3jkaRxPy
kFRQjXP8mKO3P7v7Lf1Ser0Aqlx05MfjasoeHA92R8jmdXAWXTqt34TtW7yxSyaEzu5bsXDp
UkyfbyHgYRm2eUci6kAaIsLi4SI2Z7vECssXWWDurOmYOmM6RkybiRFzLTF+2VrMd9oO91AB
hanpSDmXrQa11Igw7PdwxrolEzFh9N8wbOQIWMhEwHV7EILCYnAidT+OH/XH4cjtCNq6HpuW
W8NuwRJs3mCHCLHH+DA/bHdYjfmfT8D4UcMxftwY6XcmZi+2wsLVtnDYvgMu3t4IjA7H8bTj
yMnLwJEj0XCUyePY0YMwbsJoTJo2GXNmTsU8iUGzJ4/DtLGjMXHMBIwV8P3hp5MxY/E6eO09
jPT8MpWG5OTxIwjzdcVOp5VwWmWFpXMtMG2q+PL0+ZixYDVWOnkhIvEsSm+0K0DVrTbc6MHt
jnqUFZxFwj6ZKAYKaI0MRWR8OmJPl+NCVReuywSqobMbrS2NuCmT09JjJxDj7Am7CYsx9m3x
41Gr1CqTf+hRHD17ERdrKlHRWYVL9RdwOi8Jh5LCEXc4Qn0ksT8kEjudvbFslkxORghd45dg
2+ZAZJwvQHVDE25IHGnoaMaV4qtIPnAM29281SO//XFHUSzxtPnW7XubfJsBVP9bQNWDANWc
ObPUCtV//0Vw1Kv/ce8dqh/84AdqS5i3335bfeXHZemH3cvvfoCKjw75Uvq4ceNUpnQCKq5S
DR06FF6C+lW+F366KQq6U50PpIahNWIT6n1XoNxtNlp326JNQEun70Z0+Tmhe7cDugLl71Ab
qbcCtaGLcD1wEZr8VqAzcD3uRLnjTpI/7uQdVUCtsbwCp1LPw8nVCxOmzsJ7g97Hf7zyAp7/
7b/hlT/+/oGP/HQWatNrBFZc7clKCMCJSE8kxh1A6qkcnMm8isJiCTj1t9HZ0oGWxgoU5aYg
KcoXPk72WCw0jBoqQGORgB+/g8gsvYnc/Cu4kp2Oy2lHcCI2Ej67PGDn7IyVGzZgjQAKFzcn
eAsgijySioSzxRL4C1F0+hguHT+AuOAdcNtog9ky258iA+sccc7Zs2diujj5FBmQOUiuctiK
Q4mn0NjQgva6WmQcS0ZoQIiAwCgcPVmA8mvd6pOLO21tuFNzBbcuX0BZyiHEektQ3rAWTqvt
YLvcDislqC1fYgcbmS26rnfCrh0SqJIuIPVsCc6eTcOZkwdxLMEXezxtsMpqGuZIQJw7fxXm
LNwgM74tcN4uICTuCE4J7UcPhWKP91YssVqHBfPtYL3QUmZFS7Bm3UZ47Y5AxKFTiIiOR+B2
d/i62sJXBty4Y/HIqriKgmuVuJCdgvQjwTgYsgMB3q7Y6LQOax3s4OJqByfn1XDf5Y7QI3FI
q7yG/OvXkHf+ME5HuyAryhH5J8KQXliK7KpO1NV2oq22Cddrr+J8fjrC4/dhZ2go9h85jgv5
l9SLplmnUxDk4QH7pTZYtsAay5fZYtlaayxbvxwuXi7q5dWw/SGIOsTBIQIhewOxZdtm2Nha
w2GTM9bKLNfOaRNcBNTvPZqIMyUS7ETW129zqxGZgfa/MM4Vqjs3KlGemoTkAH9EeuyEw8p1
WLF4DRYusMWixWsFWNmr955WyKzWSuQ7deIEjBs/EaPHT8LkmfNg4yB8H0rC+ZJrqLh5C41d
/TmV9EbM3TfRcuUCLp+JR+wemVXaOMoAZo/JM6wwafZiWNmshYOTGxxs1mPJTCtYWazGmrUe
8Ik4geRzV5F2tgjHIuNxesdOnPbahcSwWCTFCYhIyUNp+kVUih3npR5EuN9WAX+WmGsloHzN
UixyXI6lrmuwbvsuuHkFIHhvDM6cOYOSklwUlWYhQsDFQgERo+ZOx6g50zBtgQWsli+DzSoZ
YJZYY621EwJ2hovtnkf5hRJcSjuLM4f3C8hwxTav9di4Yz2WOthi6SZXrHT3ho2rP/xksnD0
WCbKZcZ8+XIeEpOjZDISiNjUQzh9KQ+XGmpQUS+AuqEcjbX5KChOx/4zJ+GVlArvE5kIT89A
3NFoHIj0wKb1SzB12iR8PEEA1ZhZGDZ2uoD4lbCzDYefTwYORmciTe6pry5HQ00hYg/4q/fr
Zs6egZW29vD0DcO+uBPIyi1SaVf4+KYkLx37AncpwLQ32Ae5F8+irKoImbmn1ftlATu3YsdG
e7jb28De2grLBHAuWjRTvaO32XU9fAP8EHP6PJKyC5CXlYHKc6dQc/YEcvghyb5EJCVnI6+o
TuUF6mmqxcVjMYjZthpblk7BymmjFIiYNssC4y0sMcnSDp/bCYjeE43grFKcLKhBSnwW0n2P
46R7AtLCs2UC2YDzFe3IF7tq7/86tbW3b0+4O70NuNNQgNuXT6E1+zAuHz+IsweisT8gTHw9
BcV55eol7dLSSwKgw9WKvtPmjdi8LQiBgYmIDI5FVGAk4iMicCCMH7V4YZunB5ZIPFjE1wwE
uK8PiEJQisSZMompN+pRUXUVdxpvoDbzOEI8BPDOGIaJU6dgg/tOJKbmo7SyDuUVuSi7lIz8
sxKf9wciwmMXQrbtRJIAz9KcVDSKXeQcS0CYn7da5bNfsw6rVouPSb+2zlvgEx6F4IMHkZx+
Sn2FeaOxXOL7KURH7sBGR75faIf1Thuwxc1RJp2u2O25Gb7btmCzszs2bHDHwhVOcJS4F3vq
Iq7Ud6GuqQX5FzJxLDYQcSEecLNbgZXz52PW57MxY7Yl5ixdB1s3PwFUGSioajYk7+0Cuupx
ozIPF84mICUuWL0LGxF1AqH7snDifDUqGnvVo7bqqisoOXdW5H8A3jYbsXjkXHz2P5Mx9pNF
MuGTeOTkB3++3J+ThVo0oE1tQN6CxrbraGkWYNzZg1uNQqvYTuLeZIR7xCDS9wByTuejpaEV
7Z1tqG2S/qrLkHXqHOLCD8PXM1C9lH78dCYq65vvJmv9wnZfJoDqfwOoehCgGjVqBH7/hxfu
5aFihnQ+guOq0SuvvKLeoWIeqpSUlH/KV358KX3Lli0YPXo0XnvtNdXXk08+qbKm852CkNjD
CNwvwCBWBuP94TjitxlHd67DsV22SNy+FInbVuKoBIHkbfZI2b4OKR7y622HJN/lSNy9FPH+
lojbuRBHdyxDqocd0nY54KSvCxL8tyLa31tmWRFwcd6JiZMX4H/eGaRoeOnF5/Hi8/+O11/9
4wNfSqcMjJnTjUe9OHSTDAYVWSdRll+Aq1fFga+0oa7+XuLBjpYadLVUoKEqHxnJcfDZug2O
fM8lLE4MuhzF1zpQVXMTXXXV6KktR0VxDo6lJCJUZsd7ZIYeEbUX8QmH1BcwOZcqUVzdjKrr
zSrxWk9NsQwuqYiTme0Oz63wEAXvDtijFL3b3xdh4ZHY4h2I4JgE5BdX9G8HcEs9Wss6ex5n
z+WhqKxefV6uPvFta8Wdjpsy6Dajp6IIucnxOBV3EAfDwhHkH4zA3WES+KNlZnQQRwUYnTye
htLyFlTWdqts8+UlOSi5mIpTyREID9yJ3X4yqxbQ5u1/AH7B8YhPyUTJlSrU19/ApbxMxEvA
5aNKL89gBO3yQXjAboRHxODI8XScPl+E4yczZAA9ipPx0TiWdAi5RbmobG1BXWc7GurKUFee
jauFmeqLMi63HjgUg0R+9RcfidiUOAFNF3G5pR2Nt3tws64IVTmHUXchFs0V2bjW3I4bPfey
+bYL39UNFcgrkwFNdJlfWoGaukZ0tt5E1eVCnD2WgriI/YgK3oewvdEIiBBAGrEHh1LikXgq
SUBlKtIFTOTky8Aj/fJrrqPJMuuLi1Vf9oTERONQcgoyi4txtfkm6tCLJrUn2h31tVQfoOqS
YNaCttIiXMnMQPHZczhx+Dj2RScgMPgAgvhBQsRBxIQJMPDzwx6P7dgtk5KNm5ywwmY1VtnZ
Y+1GN7h6+SFcQNWZnGLUtd1SQU1ttKvyf7Wh60Y5rhek45QAwJMJ0n5kInb67sXmnbvV148H
DgrYkn72+oQgyE9AYvQxnMq+KgNCr/h0ByryZGA5k4GWLAHeuSUoKaxGdZGE5ss1aKksw43S
XJxLPYLIsN0ICgvA7qhAeIVLEJdB7ODxk0hJy0JOboHKc9fUWIuW9npkF+diT3Qo3Hy9sMV3
J7wDZVCJCkdIUChCxYeZ6yYnowDNtW1qK5TexkbUXy1B7vkTOJmWIDqQWX9cDILjExB6+BiC
DqSoXHAFYvc9Pdz9oBkFRZk4nXkM54rO4XJ9DZrQjZudN+VaE261V4vflqGwpgqZNRK3yq7h
aF4+Ci8JKMk5hrgDofDy9oSL+JPzrr3w9AtBuMgtOjobOVmtuFLaisorNehpb8LtnjoU5Z9B
TEwgfLhH6f5YpJ7JRWb2JZRJu3f6B8jqsosyOPJrtWiZjCShrrEanbdb0XCzBuWl+biQeRrp
x6SP4N0I8PVEVHigenS5e7cXDu4Lw/kLWSi83oSK5g7UVlegTkDizeI8XLuQh4JsmXSJXupv
9valzWhrQmXeKeQmReJYhDeifLYi1G8ntu/wxDafQPWxi09MEoJPZSPjegvK6ruRd64MlSdK
UXJQ9Hy6Etcre1DWeBtXWnr7kmLK/zYNqITuOy2VMonNx63yXDQW5uJKVhYunS/AlaJKtDd1
q/otzQLKslNxODEccQnR2HcgGUcSMnA8MV0NzhVFxQI0c3DqeDISko5iX/Jx9eVlaPJpRJ85
j/TSSlR19PRNRJgrr1XkXV2Cwowj2Bflh+CwvTiSmokLl2pwueqG2H09ujquoq2+GFWFWchK
OYG0hGSU5mai5+Y1iEHhhvh3nkwIT8mYl5CQiP2HErAvPglxKSdx5NQZ8aNclIp8W3ta1HZL
DY1lyMk+ioR4sWexubjDsRKzj0hMPam+1i7MFjpPpuGw2KF/8H7EHD6DnNLrCnzyBfOaqnIU
ZaWiMDNZfVwU4ucD7x0CrH0FSIYeQFjscaTl8YvP22oFsLf/C+Deria01F9B5WXRUephAVRh
2LI5AI7OIQiJOqbSjFyvk3hVUYmS3GzhVSauofvg5+QNJ+vt2OIcCl//OISKPx87KxOgG3Wo
bhcZ3elQWxB19nagq7P97jZpPfW3cDWnAvmnClAoE6nGqgZ0t3Xhek2l+uDiZGoy4qNiESlA
N9g/TMbwJFwsvoymzp4vJMe9jS8mcP7/B1D5qEzpHw16Dy+99ELfV378Osvf31/taTdt2jSM
HTtWvUN1QNBtbW2tyldkBBgETMzZozcQHghssLympkZ9TeHu7q42R+ZL7z//+c/xs5/9TKVp
GDzkU4ydOh1TZs9VL6layKx79rQp6mXMJTJTXb1kPuZPn4hVlvNgt2QxlsyZhQUzpmDpvBky
q54Jq/lTsXzhdFjOmoj5U8bB8vPJWDFHZnBz+x6HzOIKzedzMGTwCAFS7+Dll1/Fb379Ap57
7pd4/te/xauv/Am2trbqk3+j0PjyOfnWZcwYz9U68q1lwTqdHVKnSwywu0PlK7qb7K1/L79b
ak+L7v6BrEsNzswsXVfXgJbOvn2U+Ks/aVcrCDKotre3ormlTW2PwRQIzPHU2taBVhqqTuvf
v3VIW1MdOtqbVT4Z5vxhfizqjdmzqYObbZ1qA1KS0tXVo3L3qI1oO7tUbiuVUJIJDTu7+zbS
7G+XPHU3N6GH+pebuadTm9DQ0NCkji7uco6+vbp0wj3mf+nb/PSW4r32eoPKjyVNyCAhtLT2
qg0+FfVyva1FZkbttwTHdalztY1Jeyc6u3pVkkpuc8IcM72UsdqB/hZaxO6a29uEh47+NAM9
EgRa0dhYr7ZaYJ4fbszLvf/aujrvbezLRKASELlCw0drOgOx3ole5Whi+x3tKi8P+6Zs2tta
0KN2pVcEob21Q+UVa2hqRENLI7pEvx1CX0tbM5pFv20dfXmGeNBuaEfcYJQiInBi201iR523
+7Ycaqds9ZZDvf1b6XBLHemLea86RH9Nja0qZ1hjU6vSE2XH7Uqa6m6ofEfV1ZU4nXYKoWEh
2O6xA6vXroG9g6N6ZFZUWoKm5pt39+7rS1TZpTJ/Mw/RLdqBDMj1DcKTzG47u/hFq9hKRzda
G1tUjrOu7r6M+r3GPe5ET7ebW3Gro+cLS/rdIof2mzKIye/t3i41m6WcmIuqUWTZl7fnXowg
XSrNh9RvEp4o/3axwzb5pc9xNadZ+mG+sLaWTuY2vLvFCu1CZW3vaBYZ923w2yHEN1JHzHl2
694WMswI3cO8TsK/2ruw3y54n84hRLthDrJ6se1WvXFyj9hCd5vqhx+i1DY2q5QBTBZKuej9
6piT6Hb/11iqLW7J0tqodlRoa2dC1Ft9R0f/BE0lwr2l9EgbYywhjXojWpUrrrVvW5pbnR3q
bw52zeKTPGiT5I28dqjcnP2paikgTgIZK7puK3/D3a2autHT2oD2xuvoEGDD7V8oX+q9tr4Z
9WJrbf0rCyrBJLvo6tvHr7etP6Zpv1G557qUvfTlpe2PX6KLWy3cm7Vd7TnXIRMXxg6dI488
chsg5g/j18iMS60tXSq3XXOTAJauPtmQ33bhu03+7urXBdMeN4n9N3d09yUz5WDd1ZfY93ZX
i8p7xi1XOnr69p7s6u7LNt/bK/GiS+gSWwS/fus17sDZdzD2MQbxy/Z6iW+Mv6pvqdshvtjn
w739iVDF54V29kd+OC7cvNmo9EW61R6F3dxNo10ljO0w+A/6t1PqFZvq7mhWYwJ1SRm1izzr
bxJQt6uNpfuS0vb13aXidsddW60sL8XRI4lw2bRDJujbsW3HHsQKoMm9UIgr5VUqT6AQj9sd
Qn9jN5pqJe40sJ17e+4R3HHbKW6PrBEOxzXGcbWpdH8eqa7WbjRcb5T7b6qtbEpKihEZGa6e
7jisd0RkeBQKLhbKRLlRjVNMSK13baDtf2Ebt+6eu39TbjoO8NyIJfS4a7rQob+4Ny033Rie
bdH3NGbhuXH81uX6tSZzm8jzmsYBxn1++f40V9cJqJydneHm5oKdO3ciKCgAjzAz+pAhQ/De
e+/hnXfeUefcHJkrS6aEP+gwZYoBkR2HhISo97IGDx6sHvk999xz6p2tocM+w4gx49Xn3mMm
TsW4ydMwYeoMdYyfMl39zWsTP5+p/v50xBgM+lTuGTtR/T1h8nRMnDQNEyd8jgnj5f6xkzF2
zCSMHjUBo0ZKuyPG4dNPRuDtt97Df73yOv7jD6/i5Zf+iJde/E/8+bU38dGHQxAQEKSAn86A
bvqulKmQzQmfcuIAyvt58PzLym6grW8oQ71SaNxr0GhY993A2cTwHiZp6Zc6DP9x+4t/3wUr
9/nf24svJZf78TcQsDfdi1ElluPGoANMBu7XP+Vu3I7InJ38ozonPTwG4lHr754Ob6s9DpnA
9XJZMXJyzyEj8wwOJxzCgYPROH3mhACxawoUqK+EZJAnqLjTv61JX8bmB9OlJ04MSGqzVbFx
c/Z9P/3ooPdl/MK48m36Ycj92jFeI63Gd0F5/qD7Te1noID7Ze3nqxyUhak89JfHWrZ64kcd
/TP1oyfRHJR0bNP1vypfXzUekZ5/5Nr/C9pMxwfKUC9GPKz9aX2Zypu2V11dg5OpaUg4nIz4
uKNIO3MOl4rLVULkrs7bZuNtT/cddQ23jYmgv7iPraledaxUYEv8hyvLZ8+eVR+uJSUJiMvN
VWW0D2M8NAUrtE8jSHrYWG4c84x+bByvNW0ag3zZsY736Ynwg+yafKalpcHLywszZsxQ74cT
2/C4+w7V9773PbUlDN+hWrBgAfbv349r167dDWB6RWqgwGXu776MwC2CaEtU5nVHR0f1LhX3
C/zkk08w9fPpGDtxCkaMnoChn43BZ6PGY8z4KRgvIIm//JvH6HGTMXLMRAz+dAQ+GjxM1R01
dpIqHzFynAJR48dNUUCKAOrjQUMxZPBwDBs6SoGqoZ+OxCdDPsNnw8co0DV71nzYr3XETi9f
MYzMu0hZ/xqDlbkAS6MwPtq8n0NqRZtuY6PRrrnB0vjPnHKNwNUIDkxpMQURprm0TOnnuTaq
+4E8/TdXvIwgigCKDqvLuDp1N4O7waG5KiUTQrV7utqv0IwDmfKiHcq0nrkyyvVhHMN0kL5f
fVOH1fLg4HW/LZiMOjKtZzojM6cfc4ME+euTz+27K08ES723+1ZbuGLDveta25rURsYaQPG6
el9R7xN3xzxgMQJGc7SYS3xr7tG4aVDrs5m+iYeW9f0mAkY5G2VGP6UMjBMKo3yNMmRdc2Da
lF9zg5w5fzT+MxcP9aBp2pa5PUHN+au2AXP2b/RxbecPOyCxrjkA+CD9PAzgNbWZgeKgOds2
7cecXM21r2k1ytnU3sz1p9syTkj1gP2g8c1UP/pvUz1TfgNtW3a/2GJsi+e6HZ2uR0/WtYy4
Wt3R3oOG+hbcqG1SWfsZV+83ke3s6EVba/c9UPUPTHhYj3GPj7705OphJrta7vcbV3idtmpa
z9yk2DhePywPA42VD8OzBnQEVKdPn1b5NflEj4tD3/3udxWOeoSbIvMxHFeO+JUf0xusWrVK
ZTjnl2y6Ia1wYzDRs6aBBKmdhUIvKytT72Xx8SKXyZhKwc19C5xdNmOdgzNWr9mAlTZrYW27
Dnb2jqpsw0ZX9YKgjd16dZ3nug7L+Lt2jYMCRzx4brtarlmvVcdqG/u7v3a267HOfiOcN22G
r0+AQvXZWXmoqak1q1wdBMwFWiNIGiiQGJcnTYOJvqaBmR6ojf1rJx9opmp8f82cERkHGdPA
YizTfWsadXvmgpqxr766t9Wmsrd77zksz9Ums/3giue39SahvffK+dvb/2KrKWCgo2iH0v2Z
czztzDq4aRqNPD3MCp2Wx0B61PwO5GRaXlp+5gZKc6BL63egFZCBQPE9UNe/yfIXANKXO8wN
OEaZmoJrbTOaRy1nc8lwB1qt1bNBDQyNMcbcoEY56cHFXHwxt3qjaTLagu7HSI/u11RvRrCu
ZaL/mePXuEptbvJp5MH0sYM5cK8BqnGWr1fFjAPOQABc/9PtmPMF3c/99GPOno33G0GQOTqM
vJi2Y+TdKD/jYPqg+Gmqg4HioKneNUAx8mKORlPZGdsz2v5A8WcguRiBo2ls1X9resytuPAa
H4XrJwPqcWz/QbBE4MRfxlyCLE5iv7Ay1T/hfRDQ0/0axzxTvRlt06g7c+B4oAmLkWdzTxWM
E1qjLw8Uz++3Emu0JXPji2mcNW2DuIgrVMQyBFR8H5wf2hFLPRIWFgYPbkpqba328mOFpUuX
qneouIw30PKbFqSpAIwzAM20XqlSGwrX1PS9wFxejqLiElyvbVD7qtU23ER1bT2uVNWo49qN
BvU8uep6nfqbmwiXVVSjvPKaOlhWca0W9XU3cb2mHlWV13Gt+gbqbjSpvbT4/k51Va16nszf
mmt16pf1btQ2orVFglI3FMo3BSumhjEQqjUNwHp1534I2QikTA3vfo8UzQVFcwFE02EaiE0N
xhx4/PsVqIGDbV/79x71GR1VAyij41LWpqtVenNlU/kY6TedqZh7Xj7QCsnDJqY1J+8v82hx
oFnVQCDNVBd6KVz/M/5ttMe/X63pVIcRIPHxnnFVyrg6xYPvCelfvTGrUeb3m6EbB54HPd4w
2qsOhuZAiOkyvalejBO5L/Mo2NS+zcnvfqshpqsF93usOJB/mvtCmHrlQP4wqznGhMIPkoFR
lqYD0cPwN5B+zAGw+61emVstHGjVzXQiZW7FydwKlrH9gfzY9KMp4yTtfqveOr6ZW0EdKG6Y
W2EyZ4MDTVbNvVJgrtxUj3zf1BhLOzuEz7ZuNcnt7d8oj+/R6XNz/zkpNoJA42EcwwcCL6bg
11SHWjbGxQXTFcIHxe/7TeiMWMP0MIK9+43JxhhoOnaa80/m52RaqT179qh9innwPXG+R/UI
QRQfwzGNwQcffKAOvpzu6+uL7OxsBXx4cIWptLRUvcDNg+csv3z5MoqLi9XBsqKiIuTl5aGg
oEDdk5+fr8r5JR3/vnr1qgJVPHh+IS8feYWXVH6OotJy9ZtfXHr3IKC6VHYVF4tK1PWS8goU
X76ifisqa1BacgWXistQXHRZHTzXfxcWlCD/YjFKLgmdpVfv1uHfvJadnavAHeki3YWFhYpu
TTNf7iaPfGTJ8osXL6pf8s979DXW5UFZ8NB/8xp51LzzPvbBQ8uLB69pObIPHqzLe9kGaePB
uiyrqKhQ9xjbYH3WIX089DXWZX/kifdonbCM17RuNT9GWrUs2Bbp03VJE8vYX0VFlZJlbk4+
CvIvKdnyoF74uTrPtT74Sz1wbzX+chNP9qNlqOWn2yeNPDfyRnp4TjoqKyvv8s762i6NemBd
c+W6TbavedP2rPvUdGm58Jq2E60L/mpZsL5uh/dTj6b96v54Lx2Tv+SJPqN1yXOW8Zq2FyOt
mv7CQuqGOZQuoeZ6pdojMb8gVyYqF1VZYVEeqqrFV0rFrgsvoPiS2PVlkUdJgTrKr5R8wWa0
XWp5al61vdNetM1o+9D2TZpYlzxrm9GyI93aBrUd8x7Nu7YvczGGsmAbjBfsm/VzcnJUO/Rd
XV/7kfYh/tI+dJu6T8qc97E/0m+Mb9rujPGN/fJvHRN48JxlvKZ1ampHul8m8SStmj8dA7Q+
tQ2zTdKt5aP50v5LnvlL2jnRZVts2xh7yR/bo1y1/Wl/1jrQ+jGNYQPpx6hH3Y72DW2Luh1z
vqNlqX1R98+/SauWnW5Py411Wc8YX3Xbmj7KQrdBXeo4yXMtW+2j+hr74L1aLqyr46Suq8cB
/rIeZUA75MFzHS+N/Gq70Txo2RjHC+0/xviq45NRDjz0WMl2tG2wXNOt+ciT8ZPxlIsFFVev
qQWEq1eqVexlzL2QW6Cu60UHxuqc7Ivql7Fb26GOY7ovnlOn2jdJtx63tc32xf+Ku3FMy0Lb
ipaV1om2Vc23kUcdb7QMtf2xLv+mrtmPjjXGcVNjDj1u6nir5Wq0V9M4z3t0PNfXjLFMx289
BpCexMRE9biP2RBmz56t3qOaOXOmOtQ7VI8++ii+//3vqyUrvjDOZJ/Tp0+Hq6urWtbaunVr
3yM6NzcFtIKDg7F79254enqqlAjMM+Xn54e9e/ciICBA1edjvc2bN6uDbbCc52vXrsWGDRtU
HSK63XsCsWXrdqzf4AgHRyfs8GDm0QD4+PqrT3o9vbzVdZYHBoUgdG+4urZ12w5VvlUOX/k7
MDAYPj5+0q8r1q3bgE2bXLBD7veS+7dv9xD6N8HObq369fb2EfoD1C9pY5b4TZs2qbf2+QI9
kae3t7fij+V8+SwwMFDxSCTq4OCgyskDBctf8kb58OC5vkYeeQ/lx1+2wbZYTvmyLdZjnzx2
7Nih2ubB+qSBdVlOmVJ+3G6E7VMHvIfnlCn7YH3Kmtd0H3x3jTSxXx48ZxmvkU/Wp055zn5J
E9tk26GhoapNts1rfV8zBKl7KK9togdH0RsPyjpIdER9bN68VZC7s9jHNqUXrR9XV8qPtrRZ
2tqlbGbXrl1KbuSP/fJv0s+Df3MGQP4oD+qL/ZMO/eiY+iGd5IFyYn3SSj7JE+2Tf1NuPHjO
Ml7j6qxRRmyf7Wia2C/1wz5Zzr5Yn23wl3KgTHkf67Fv0kX6tC1p/fCatiXep2mj/ZFuyoIH
z1nGa6yv/YfnWhb0u927/UTWu+C+2RlOmzZgg8Nadez03iF+5QMX140qyaub+ybxny0ICQ1Q
GX39/OlTrqqcPJNX0kR9sl+2T97YHw/2RX55jbxQZqSN8tG0avnRvkkr61A3pJf2w/a1PrVt
s22jrbIftsV2tC/yXt7Dvnid9/Aaf1lub2+vaGVcoo60DbNf1id9rKv1zPo82J62ffKifdpo
37yu9c367JcHz43yoY5pG1p+lIX2Tx7ad3mNdFBG1CnlrnnWNmC0e9qqtlPW7/O3bXfp4b1s
T7fBcp4bY5Lmm7rQ+tFxhnQ+SD86vvPg/ZpWluvYRFooP6MeSCvrGGOVloWxDd5PerTuWK5p
ok8b9cNyo34oP/LKfnWs5MFzlun4y7q0JbbPNrRc2Q7LdZzU+qGsSSt5Ic/UHQ/SruM02yZN
5IG8av/RMZ0yYbvsR+uCdPHQ44OWqV7lYPu0I/LNe1lm1BvpJX/UG+npi1F9cXTXLl8Vaxlf
Od4xFnvImMkxkLHY3X2LKmc9xmdPz52qjLIw9kueSZu2I8qDfLF/1iM9Ohazfx3f6FPMFKDH
DS1rzTdtibLmwXMtB61/HXPJF/mjbHQ7lKX2W8qXNLEN0kM6tS+QTsZPPWaxHV5ju2yfejWO
fWxH80p69PjNc5bpWEeadOymLfE6F53eeust/OEPf8AzzzyDb33rW33vUPHk29/+Nr7zne+o
g8Dq+eefV4/+2PGiRYtUDim+SD5s2DCV9HPdunVYtmwZpkyZosq5umVhYaEEyi8EmSKBXw3y
BXciODs7OyUMrob99a9/xfvvv6/OWZfEzbaYI+28j3f/9ldMnToNq2ysYWPDRIaWqvyDjz6U
Nidi6fJlsLZejWkzpuOjjz7Gm2++iUmTpqhHlOvXO6h0D599NlL1MXz4CMyZM0ecxE19YThq
1BhFz5AhnyqeOKhTSOSNgiFN8+bNU7wReXLV7t1331VfPhKB0kl4jXRzFY/1KQ8KnakXpk6d
qr6Q5MFzlvEaBU/5UB5jxoxRbRMUcZsfvq/G56/si7JgOWmj7JmxnjnBaPDsm49kJ02apNrh
1wTUA41G00qeWT5//nzVDtubNWuW0g/bIU3UDw+es4zXWIdt2NjYqHOWk2/2RR5o2KSV7VN+
LCctbIf3kQduqE35Ug8bBBhbWVlhxIhRqv7YseMVTwSz/B06dLiS6bBhnynboGGTF+71SJkO
Hz5c6Y19kHd+hcr2eVCWtCOWUw+UHellfcqIfGveBg0apHRLZ+A7gSwnrTx4zjJeo25ZRp5J
A2lnO/wwY+TIkWpDb+pD00Mbo7zZPnVBGVEW5J31yDP5oB4oO6Mt8R7SSlmzH+0/99MPbZJ9
04coL5ZTftwiytp6pfDgpDZ25t5ngz5+X20SbbfGGs4ujrBcPB9vv/MGPvjwr5g8ZTxs7VbJ
xGUNLObOxOAhH+LN/3ldtUNaKFf+Ugbsl3Kn3hlIySO/ZNEfk5AH1qfvsj5pMtWPDjjUEXXF
IMxyzuK0n1BeDNDUBSdw2pboJ6SF/knbYJ988VNv3M6Bj9dZzlQsvE/HJa0Hypo+pGXHeEVe
acekl3Il/SxnfeqH9VlOHbAf0kr66e/0DQ0EeM4yXuM56/IeyottsC22ybYJTigv1qe9cIcI
0kieaUusT1nQRiwtLZXtsT3KgImQeZ3l9BPyQh/nhJf3LFy4UA045I8xl3bH+pQl26H9UW+U
BQ+W64GJtvfGG288UD+UEdtnOeMY2ycPq1evVoMNbZJxkDbJ632+bqd+NQ/8JU+kibyQV7bP
tliPfPGg3VNGlBX1wPjJOEa90fbIO2VMe6QMaWN871frh+MVD60fXtPjDPmjT1P3HDdIE3VA
/tgX69M22Bd9ljzQTx+kH8rIyDNl0BffhinZUEa0DcpbxzGes4zXqDe2T/2QVpZrPZBn0kW5
sF/GOMYr2hdpZd8aIFhYzOuP3X9TMXrNGnslv4ULLZXcXn31NfXL8ZOgwdLSSvHG/XVJK+XJ
PuhHpIl12R5loMcTPf6QB+0/euwjreSBMqbNkw9NK8upK9blwXOW8RrPKW/aJO2ZvkzeKF/S
ovVDWrR+6FeUN21G00NZaP2wPcYv+gljOGliuY5v7Jf9kD6tn8mTJ9/VD8+1fsgbZUE9UCeU
NdtiO8zdyWToP/rRj/DYY4/1vZjOAEHkxi/8mC2dAIu/JJTJq2gUvOlrX/sa/uVf/kUJLj09
XTHzm9/8RoGxr3/96yp48ks+CoA5plj2jW98QymMyJF9MCiyjJ0TtNHIudffX/7yOh5/7JsK
4f3m338tAluCzLMZwsR7+M63vi19P4Lnnv25GNwUXLyQJ8wMw/e/+z08/vhj+OlPfyoGMBbn
z59XGxVyle3RR7+mkocOHfqJ2vrGwmK2evH+m9/8Bn784x8LrW/ixIkTSsB8mezxxx9XwmDS
T5bTEH/3u9+plTteI93M18VZC8/JM6/9/ve/vzu7470//OEPpY9v4qWXXlIGwi8l6VwarDKJ
KpVNuVJJVATl9PTTTyvlcgmfhvDUU0+pdp544gll7Pwslc7G/F2sTx1RD8xCT6OjflhOutjf
wYMHlWz5oQHpp95IH2c4HCBffvll1T7b4f6KDLxRUVHqnGVsi23SeJg+g1sGsR2WU140fNoA
DZNfhz722KN49tlnVYZ28jZ69EhlQ9QDeeOO3JmZmWKckxUP1Cf1QKPkxw+0Md5Pmn7yk58o
UMI9Juk42vYoP/LAvGYcXChjlvMeDqqclXAmQv2wjLJ48cUXlXOHh4ere9kGZUHdMoDQXuko
nETwHtozgRAfr1AP5IHl1AeDIJfDGWxoc9Q/rzMYUhZ0tj7evqZsiYMVP8JgQKLeadtsi0GY
tkS/Ix2kkwd54OyKOqJdaT8kD7SxuLg45Uv0HfbBBLnr1q0V+R1Rm3J+69vfUJl6n3n2X7Ha
diWSU47gvfffwfd/8B2VxffpZ57CzFmfIys7Ax8P/gBPPvUjPPqNR5SfMGjw8T4DJv2EPkqZ
ELDw5UsOxIwPpJ/yo374DgFtj3pgfV7j4Ew7ov8wBrCMciJv5EHrgfVpT5zd0R/IG+1Wt0+d
MwjSvhn4WM76pI1+wMcD1AP9jW3RxgjEuexPPTAGsJz+xTiWkZGh9Mp61IPWDz/5ZnCkTWu/
ov0wJjGYMmCyjPWpE9LPg+cs4zXW4UyZOqV+SCvborzog7RXykt/BaT9h18JkTbSSFpJM2kn
D+SFtLKc+uGgwEcN1ANnw9qOGfz5+IF6YH+0I9LE/vgOLAcd6of08B7SxxUCxjHqhLbEe1iH
MYDxivbJcrbD+MGBlDGREwvtD7RnDnKUH22EPFDPfLpBHhiLOZmh37Cc1wlI6NPkgbyyD8Y3
DpRsnxNy7SeklfZAG6MMyRt5YN/kgbKmzCl72gV5YLlePeI5y3iNvNHX+Ik/ARbL6T/UA3nj
jiAcu3R98sBB/ty5c4o2PVhS7vQPPgqiDTIGaB9lDMjKylI2+4tf/ELRStskAGCMYT+0adLP
ctoe9cDYxFjMdtg3Zc8VEMYy2qFe7KCfcHXk8OHDSi66PuXCtpOSElWbTz75Y2Uzv/zlc8rG
EhLiFWh64okf9uvtOSV/7mpBoM14xfrkhfphDCBvlAFlRN4ZHxm7CRa1fngP/ZhjA4EH6dDl
pJsxgJNV+gnppPwYDwj+yTcBrbZJ6odtkDfqgfW1HjjhYPyhndN/tB6oH46JHBspT9oYxw36
DWO31g9pYjn1SH8jZuE4Q5lSb4xX1I+OAeyX5fQN+gJX6DRvpJWYhTE6MjJS6Y0yoi5ox7QN
4pxH9AvjJEYPCHRWBjIGLjoIO9ONchBlbiltJCSC91BIHMiJfjkws4xCexCgOhwfizcIqATs
fI2A6te/wnICqox0fEhA9e3HVflzPxdBCqDKuyCDnQCq7333O/iWAKqnnvqJoNPR4gAZMnMa
r4zq61+nIJ8QHoaI0lNkVjNHBPm0GuB/9CMK8g0J1scVcKOR0Ng0oNKZ3emsVBRpJQ8MUOSB
5xQi+aMx0Ei4nEg0THDBezgIcrZMx6eRsD4PGgkHcg4UNHQagwZUNHQjoNIBZyBAxWD8MIBK
B00aCZ2VS7qkTw+CXxVQfVf00AeonlaA6uTJE/2A6ntK3j/72b+qv+nEBLw//elTypaoh2HD
PlWggzN4OooOvpQZgRlngqSD9ckDZawBFXnQTswM//qRpQYdpJeAhXUjIiLUvTpAUbcEa3Ri
zuqpe7bDvjgDZnCkP/SBxcfUoMZZy/8NQKUDCH2DgZTgnHbFuuz/nwWofvb0k38HqL7+aF/A
IW8cBDn7ox6oZ/JA3phvhmCf/ZFnypD6oV3QlkmfnjwxBlDWnDVzEGAZaaV+CFD4AQz1wPrk
gwGXqwQEMAQBun3aGAM4gyBpYF0dTAn+OKhxRkrQx7aoD+0n9CPqSw9qXxVQUQ868JN+Hjxn
Ga99VUClYwBpJu16oCBPLKd+GBNoe4wB5IF0sn8OdpwwcmKoB2we1A/p4aRO+wnv4aBGP+Gk
ijrRE0bWYcyLiYlRoEOXkzcOQowzLCcPvEbQQHkS8FA/9APqmYMVeeAATBBI2rUeNKDiYPjP
BFTa1xm79GNFnuuBnLri4K4BlY7d7MsIqFjO9jVo14BKg3b6Nv2DeuDkSk96aYOM5axPkMn7
2T5lQh4YY2jj2n9YnzGAvs4YoH2dtJI+AkKCDm1L5IODt44BpFXXZ5s2NqvEBo6qRQkCJ459
v/jFz2FpuVDAdgIGDSIP31cx+rnnnlWLEmlpp8Wmhose+vyEvHBFiDGAvJEHvR3dVwVUpJN8
a1BI+yP/OqY/LKAiJtGTJyOg6pu4/z2gUl/cSR+0McZ42h71zfvZPmMr4xV9nX5C3tg+bZw8
cLynzB8EqHgP9cCFJH50938A4Mzg0dsLeQwAAAAASUVORK5CYII=
</office:binary-data>
<text:p></text:p>
</draw:image><draw:line>
<text:p></text:p>
</draw:line><draw:line>
<text:p></text:p>
</draw:line><draw:line>
<text:p></text:p>
</draw:line><draw:line>
<text:p></text:p>
</draw:line><draw:line>
<text:p></text:p>
</draw:line><draw:line>
<text:p></text:p>
</draw:line><draw:line>
<text:p></text:p>
</draw:line><draw:line>
<text:p></text:p>
</draw:line><draw:frame>
</draw:page><draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>predictivo de la ciencia</text:span>
</text:p><draw:page>
<draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>332</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>| Campus | V. XXV | No. 30 | julio-diciembre
</text:p><text:s></text:s>
| 2020 | <text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>| ISSN (impreso): 1812-6049 | ISSN (en línea): 2523-1820 |
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Tabla 1 </text:span>
</text:p><draw:path>
<text:p></text:p>
</draw:path><draw:line>
<text:p></text:p>
</draw:line><draw:line>
<text:p></text:p>
</draw:line><draw:line>
<text:p></text:p>
</draw:line><draw:line>
<text:p></text:p>
</draw:line><draw:line>
<text:p></text:p>
</draw:line><draw:line>
<text:p></text:p>
</draw:line><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Barreras epistemológicas / estructuras metodológicas</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Estructuras metodológicas</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Barreras epistemológicas</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Datos</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>1.
</text:p><text:s></text:s>
¿Se origina de una observación?</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>2.
</text:p><text:s></text:s>
¿Es orientativo de la variable?</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>3.
</text:p><text:s></text:s>
¿Pertenece a una adecuada clasificación y agrupación?</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>4.
</text:p><text:s></text:s>
¿Permitirá la comparación?</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>5.
</text:p><text:s></text:s>
¿Se reconoce para la evidencia científica?</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Significado</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>1.
</text:p><text:s></text:s>
¿Se permite la interpretación?</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>2.
</text:p><text:s></text:s>
¿Cómo influye en la información para generar conocimiento?</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>3.
</text:p><text:s></text:s>
¿La <text:s></text:s>
contrastación <text:s></text:s>
que <text:s></text:s>
se <text:s></text:s>
indique <text:s></text:s>
dará <text:s></text:s>
distinción <text:s></text:s>
al <text:s></text:s>
conoci-</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>miento científico?</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>4.
</text:p><text:s></text:s>
¿Se considera resaltante la interpretación ante las características </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de los datos agrupados?</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>5.
</text:p><text:s></text:s>
¿Con el tratamiento que se propone, los objetivos de la investi-</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>gación se cumplirán?</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>En </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>prueba </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>estadística </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>t-Student </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>entre la estructura metodológica del dato </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>y la significación, el intervalo de confianza </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>se extendió entre -46,27 y -41,73] donde </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la t = -53,88 y el valor de p = 7,09.
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Discusión</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Ante </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>diferencia </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>estadísticamente </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>significativa (p<0,05) entre la estructura </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>secuencial de los datos y la significación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>se
</text:p><text:s></text:s>
observó <text:s></text:s>
que <text:s></text:s>
el <text:s></text:s>
análisis <text:s></text:s>
de <text:s></text:s>
los <text:s></text:s>
datos </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>fue </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>menos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>relevante </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>en </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>comparación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>con la importancia que se atribuye a su </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>significación. En el modelo de predicción </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de
</text:p><text:s></text:s>
la <text:s></text:s>
ciencia <text:s></text:s>
se <text:s></text:s>
establece <text:s></text:s>
el <text:s></text:s>
análisis <text:s></text:s>
de </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>las </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>barreras </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>epistemológicas </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>según </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>los </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>datos y el significado que espera lograrse </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>en </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>cualquier </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>proceso </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>investigación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>científica
</text:p><text:s></text:s>
pero, <text:s></text:s>
una <text:s></text:s>
de <text:s></text:s>
las <text:s></text:s>
principales </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>dificultades
</text:p><text:s></text:s>
está <text:s></text:s>
en <text:s></text:s>
la <text:s></text:s>
mediación <text:s></text:s>
de <text:s></text:s>
las </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>variables </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>y </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>su </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>posible </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>reconocimiento </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>para presentar datos fidedignos. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Canziani </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>& </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Tullar </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(2017) </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>señalan </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>el </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>pensamiento </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>crítico </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>del </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>objeto </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>observación para que los datos representen </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>hechos reales. El dato que se considera es </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>producto del acto de aprehensión con el </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>objeto de investigación (Teckchandani & </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Khanin, 2014; Baltag </text:span>
<text:span>et al</text:span>
<text:span>., 2019; Karini </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>&
</text:p><text:s></text:s>
Kamandi, <text:s></text:s>
2019). <text:s></text:s>
Ante <text:s></text:s>
las <text:s></text:s>
barreras </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>epistemológicas
</text:p><text:s></text:s>
que <text:s></text:s>
se <text:s></text:s>
mostraron <text:s></text:s>
para </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>arquitectura </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>los </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>datos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>parece </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>que, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>construcción </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>un </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>probable </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>conocimiento
</text:p><text:s></text:s>
nuevo <text:s></text:s>
en <text:s></text:s>
el <text:s></text:s>
proceso <text:s></text:s>
de </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la
</text:p><text:s></text:s>
investigación <text:s></text:s>
científica <text:s></text:s>
será <text:s></text:s>
limitado </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(Rekalde,
</text:p><text:s></text:s>
Vizcarra <text:s></text:s>
& <text:s></text:s>
Macazaga, <text:s></text:s>
2014; </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Red’ko, 2016; Jaime & Ladino, 2018).</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>El significado que se le proporcione a </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>los datos, no necesariamente debe orientar </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>a
</text:p><text:s></text:s>
la <text:s></text:s>
evidencia <text:s></text:s>
científica, <text:s></text:s>
pues <text:s></text:s>
del <text:s></text:s>
mismo </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>modo, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>existe </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>alta </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>probabilidad </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>no </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>ofrecerse </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>novedad </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>en </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>investigación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>científica </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>con </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>el </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>implícito </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>riesgo </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>del </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>término </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>¨estadísticamente </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>significativo¨
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(Marshall & Hughes, 2020). Tergiversar el </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>significado de los datos va más allá de lo </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>ético, pues se compromete el propio futuro </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de los métodos en la ciencia para hallazgos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>con ciertos intervalos de confianza (Harris, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Chivers & Drew, 2019).</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Dentro de las limitaciones del estudio </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>se </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>menciona </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>que </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>otras </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>estructuras </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>metodológicas no se consideraron para la </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>formulación de barreras epistemológicas y </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>George Argota Pérez - Rita L. Valenzuela Herrera - Gladys R. Huamán Espinoza - Rosa Aroste Andía </text:span>
</text:p><draw:frame>
</draw:page><draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>- Emily Hernández Huamani - Percy Gavilán Chávez . Kony L. Duran Llaro</text:span>
</text:p><draw:page>
<draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>333</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>| Campus | V. XXV | No. 30 | julio-diciembre
</text:p><text:s></text:s>
| 2020 | <text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>| ISSN (impreso): 1812-6049 | ISSN (en línea): 2523-1820 |
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>que denoten potenciales
</text:p><text:s></text:s>
contribuciones </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>al desarrollo de modelos predictivos de la </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>ciencia.</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Se </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>concluye </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>que, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>identificación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de
</text:p><text:s></text:s>
las <text:s></text:s>
barreras <text:s></text:s>
epistemológicas <text:s></text:s>
para <text:s></text:s>
la </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>arquitectura de los datos y la significación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>en
</text:p><text:s></text:s>
el <text:s></text:s>
modelo <text:s></text:s>
predictivo <text:s></text:s>
de <text:s></text:s>
la <text:s></text:s>
ciencia </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>representa </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>una </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>guía </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>a </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>considerarse </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>para
</text:p><text:s></text:s>
la <text:s></text:s>
medición <text:s></text:s>
de <text:s></text:s>
las <text:s></text:s>
variables <text:s></text:s>
y <text:s></text:s>
su </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>interpretación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>hacia </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>un </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>conocimiento </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>científico. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Referencias</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Ashley,
</text:p><text:s></text:s>
E.A. <text:s></text:s>
(2016). <text:s></text:s>
Towards <text:s></text:s>
precision </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>medicine. </text:span>
<text:span>Nature Reviews Genetics</text:span>
<text:span>; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>17, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>507-522. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Doi: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.1038/</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>nrg.2016.86 </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Baltag, A., Gierasimczuk, N., Özgün, A., </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Vargas Sandoval, A.L. & Smets, S. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(2019).
</text:p><text:s></text:s>
Una <text:s></text:s>
lógica <text:s></text:s>
dinámica <text:s></text:s>
para </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>la
<text:s></text:s>
teoría <text:s></text:s>
del <text:s></text:s>
aprendizaje</text:span><text:span>.
</text:p><text:s></text:s>
Journal </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>of Logical and Algebraic Methods in </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Programming</text:span>
<text:span>;</text:span>
<text:span> </text:span>
<text:span>
<text:s></text:s>
109, <text:s></text:s>
100485</text:span><text:span>.</text:span>
<text:span>
</text:p><text:s></text:s>
Doi: </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.1016/j.jlamp.2019.100485 </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Bühlmann, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>P. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>& </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Meinshausen, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>N. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(2016). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Magging: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>maximin </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>aggregation </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>for </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>inhomogeneous </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>large-scale </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>data. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Proceedings </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>of </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>the </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>IEEE</text:span>
<text:span>; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>104</text:span>
<text:span>, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>126-135. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Doi: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.1109/JPROC.2015.2494161</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Bühlmann, P. & van der Geer, S. (2018). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Statistics for big data: a perspective. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Statist.
<text:s></text:s>
Probab. <text:s></text:s>
Lett</text:span><text:span>; </text:span>
<text:span>
<text:s></text:s>
136</text:span><text:span>,
</text:p><text:s></text:s>
37-41. </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Doi: 10.1016/j.spl.2018.02.016</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Canziani,
</text:p><text:s></text:s>
B. <text:s></text:s>
& <text:s></text:s>
Tullar, <text:s></text:s>
W.L. <text:s></text:s>
(2017). </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Developing
</text:p><text:s></text:s>
Critical <text:s></text:s>
Thinking </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>through </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Student </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Consulting </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Projects. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>J</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>ournal</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>of</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
<text:s></text:s>
</text:span><text:span>E</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>ducation</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>for</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
<text:s></text:s>
</text:span><text:span>B</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>usinEss</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>; </text:span>
<text:span>
<text:s></text:s>
92</text:span><text:span>,
</text:p><text:s></text:s>
271-279. <text:s></text:s>
Doi: </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.1080/08832323.2017.1345849</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Ceri, S. (2018). On the role of statistics </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>in the era of big data: A computer </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>science </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>perspective. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Statistics </text:span>
</text:p><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>and </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Probability </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Letters</text:span>
<text:span>; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>136</text:span>
<text:span>, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>68-72. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Doi: 10.1016/j.spl.2018.02.019</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Chan, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>K.M., </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Gould, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>R.K. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>& </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Pascual, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>U. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(2018). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Editorial </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>overview: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Relational </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>values: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>what </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>are </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>they, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>and </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>what’s </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>the </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>fuss </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>about? </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Current</text:span>
<text:span> </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Opinion </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>in</text:span>
<text:span> </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Environmental</text:span>
<text:span> </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Sustainability</text:span>
<text:span>; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>35</text:span>
<text:span>, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>1-7. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Doi: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.1016/j.</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>cosust.2018.11.003</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Couper, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>P.R. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(2020). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Epistemology. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>International </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Encyclopedia </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>of </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Human </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Geography. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Second </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>edition,
</text:p><text:s></text:s>
275–284. <text:s></text:s>
Doi: <text:s></text:s>
10.1016/</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>b978-0-08-102295-5.10640-7
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Cox, D.R., Kartsonaki, C. & Keogh, R.H. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(2018).
</text:p><text:s></text:s>
Big <text:s></text:s>
data: <text:s></text:s>
Some <text:s></text:s>
statistical </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>issues. </text:span>
<text:span>
<text:s></text:s>
Statistics <text:s></text:s>
Probability <text:s></text:s>
Letters</text:span><text:span>; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>136</text:span>
<text:span>, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>111-115. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Doi: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.1016/j.</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>spl.2018.02.015 </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Dunson, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>D. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(2018). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Statistics </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>in </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>the </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>big </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>data </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>era: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Failures </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>of </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>the </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>machine. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Statistics </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Probability </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Letters</text:span>
<text:span>; </text:span>
<text:span>
<text:s></text:s>
136</text:span><text:span>,
</text:p><text:s></text:s>
4-9. <text:s></text:s>
Doi: <text:s></text:s>
10.1016/j.</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>spl.2018.02.028</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Feyerabend, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>P. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(1958). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Review </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>of </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>mathematical </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>foundations </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>of </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>quantum mechanics. By John von </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Neumann. </text:span>
<text:span>
</text:p><text:s></text:s>
The <text:s></text:s>
British <text:s></text:s>
Journal <text:s></text:s>
for </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>the </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Philosophy </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>of </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Science</text:span>
<text:span>; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>8</text:span>
<text:span>(32), </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Barreras epistemológicas para la arquitectura de los datos y la significación en el modelo </text:span>
</text:p><draw:frame>
</draw:page><draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>predictivo de la ciencia</text:span>
</text:p><draw:page>
<draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>334</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>| Campus | V. XXV | No. 30 | julio-diciembre
</text:p><text:s></text:s>
| 2020 | <text:s></text:s>
</text:span><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:polygon>
<text:p></text:p>
</draw:polygon><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>| ISSN (impreso): 1812-6049 | ISSN (en línea): 2523-1820 |
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>343-347. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Doi.org/10.1093/bjps/</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>VIII.32.343</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Feyerabend, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>P. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(1989). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Realism </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>and </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>the
<text:s></text:s>
historicity <text:s></text:s>
of <text:s></text:s>
knowledge. </text:span><text:span>
</text:p><text:s></text:s>
The </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Journal
<text:s></text:s>
of <text:s></text:s>
Philosophy</text:span><text:span>; </text:span>
<text:span>
<text:s></text:s>
86</text:span><text:span>(8),
</text:p><text:s></text:s>
393-</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>406. Doi.org/10.2307/2026649</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Harris, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>S., </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Chivers, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>P. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>& </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Drew, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>M. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(2019).
</text:p><text:s></text:s>
The <text:s></text:s>
science <text:s></text:s>
of <text:s></text:s>
statistics: </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>reporting </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>statistical </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>results </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>with </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>confidence. </text:span>
<text:span>
</text:p><text:s></text:s>
Journal <text:s></text:s>
of <text:s></text:s>
Science <text:s></text:s>
and </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Medicine
<text:s></text:s>
in <text:s></text:s>
Sport</text:span><text:span>; </text:span>
<text:span>
<text:s></text:s>
22</text:span><text:span>,
</text:p><text:s></text:s>
Pp <text:s></text:s>
5. <text:s></text:s>
Doi: </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.1016/j.jsams.2019.08.040 </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Jaime, M.G.M. & Ladino, L.D. (2018). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>El </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>método </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>científico </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>como </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>alternativa
</text:p><text:s></text:s>
didáctica <text:s></text:s>
de <text:s></text:s>
educación </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>en </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>valores </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>para </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>escuelas </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>ingeniería. </text:span>
<text:span>Formación Universitaria</text:span>
<text:span>; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>11</text:span>
<text:span>, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>3-10. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Doi: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.4067/S0718-</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>50062018000500003</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Karini,
</text:p><text:s></text:s>
H. <text:s></text:s>
& <text:s></text:s>
Kamandi, <text:s></text:s>
A. <text:s></text:s>
(2019). <text:s></text:s>
A </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>learning-based ontology alignment </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>approach </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>using </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>inductive </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>logic </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>programming. </text:span>
<text:span>
</text:p><text:s></text:s>
Expert <text:s></text:s>
Systems <text:s></text:s>
with </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Applications</text:span>
<text:span>; </text:span>
<text:span>
<text:s></text:s>
125</text:span><text:span>,
</text:p><text:s></text:s>
421-424. <text:s></text:s>
Doi: </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.1016/j.eswa.2019.02.014
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Kenter, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>J.O., </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Raymond, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>C.M., </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>van </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Riper, C.J. & </text:span>
<text:span>et al</text:span>
<text:span>. (2019)</text:span>
<text:span>. </text:span>
<text:span>Amar el </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>desorden: navegar por la diversidad </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>y el conflicto en los valores sociales </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>para la sostenibilidad. </text:span>
<text:span>Sustainability </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Science</text:span>
<text:span>; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>14</text:span>
<text:span>, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>1439-1461. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Doi: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.1007/s11625-019-00726-4</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Kleiner
</text:p><text:s></text:s>
A., <text:s></text:s>
Talwalkar <text:s></text:s>
A., <text:s></text:s>
Sarkar <text:s></text:s>
P. <text:s></text:s>
& </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Jordan </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>M.I. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(2014). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>A </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>scalable </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>bootstrap for massive data. </text:span>
<text:span>Journal of </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>the Royal Statistical Society</text:span>
<text:span> Series </text:span>
<text:span>B </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(</text:span>
<text:span>Statistical</text:span>
<text:span>
<text:s></text:s>
Metodol</text:span><text:span>ogy</text:span>
<text:span>); </text:span>
<text:span>
<text:s></text:s>
76</text:span><text:span>,
</text:p><text:s></text:s>
795-</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>816. Doi: 10.1111/RSSB.12050</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Kronenberg, J. & Andersson, E. (2019). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Integrando valores sociales con otras </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>dimensiones de valor: uso paralelo </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>vs. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>combinación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>vs. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>integración </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>total. </text:span>
<text:span>Science</text:span>
<text:span>; </text:span>
<text:span>14</text:span>
<text:span>, 1283-1295. Doi: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.1007/s11625-019-00688-7</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Kuhn.
</text:p><text:s></text:s>
T. <text:s></text:s>
(1962) <text:s></text:s>
La <text:s></text:s>
Estructura <text:s></text:s>
de <text:s></text:s>
las </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Revoluciones Científicas. Fondo de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Cultura
</text:p><text:s></text:s>
Económica. <text:s></text:s>
México. <text:s></text:s>
319 </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Pp.154</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Kuhn,
</text:p><text:s></text:s>
T. <text:s></text:s>
(1982). <text:s></text:s>
Objetividad, <text:s></text:s>
juicios </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de
<text:s></text:s>
valor <text:s></text:s>
y <text:s></text:s>
elección <text:s></text:s>
de <text:s></text:s>
teoría. </text:span><text:span>
<text:s></text:s>
In</text:span><text:span>: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Kuhn, T., (Ed.). La tensión esencial. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Estudios selectos sobre la tradición </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>y
</text:p><text:s></text:s>
el <text:s></text:s>
cambio <text:s></text:s>
en <text:s></text:s>
el <text:s></text:s>
ámbito <text:s></text:s>
de <text:s></text:s>
la </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>ciencia. México: FCE. 344-364.</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Lakatos, I. (1987). Historia de las ciencias </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>y
</text:p><text:s></text:s>
sus <text:s></text:s>
reconstrucciones <text:s></text:s>
racionales. </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Comparación crítica de metodologías: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>La </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>historia </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>como </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>prueba </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>sus </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>reconstrucciones </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>racionales</text:span>
<text:span>. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>1</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>a</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Reimpresión. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Editorial </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Tecnos </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>S.A., Madrid. Pp 43-72. ISBN: 84-</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>309-0538-3</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Little, R.J. (2011). Calibrated Bayes, for </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Statistics
</text:p><text:s></text:s>
in <text:s></text:s>
General, <text:s></text:s>
and <text:s></text:s>
Missing </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Data in Particular with Discussion </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>and
<text:s></text:s>
Rejoinder. </text:span><text:span>
<text:s></text:s>
Statistical <text:s></text:s>
Science</text:span><text:span>; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>26</text:span>
<text:span>, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>162-186. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Doi: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.1214/10-</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>STS318 </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Marshall, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>A.P. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>& </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Hughes, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>I. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(2020). Statistics: The grammar of </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>science. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Australian </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Critical </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Care</text:span>
<text:span>; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>33</text:span>
<text:span>, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>113-115. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Doi: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.1016/j.</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>aucc.2020.02.001 </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Peña, G.D.M. (2019). French historical </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>epistemology:
</text:p><text:s></text:s>
discourse, <text:s></text:s>
concepts </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>and
<text:s></text:s>
rules <text:s></text:s>
of <text:s></text:s>
rationality. </text:span><text:span>
</text:p><text:s></text:s>
Studies <text:s></text:s>
in </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>History
<text:s></text:s>
and <text:s></text:s>
Philosophy <text:s></text:s>
of <text:s></text:s>
Science</text:span><text:span>; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>George Argota Pérez - Rita L. Valenzuela Herrera - Gladys R. Huamán Espinoza - Rosa Aroste Andía </text:span>
</text:p><draw:frame>
</draw:page><draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>- Emily Hernández Huamani - Percy Gavilán Chávez . Kony L. Duran Llaro</text:span>
</text:p><draw:page>
<draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>335</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>| Campus | V. XXV | No. 30 | julio-diciembre
</text:p><text:s></text:s>
| 2020 | <text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>| ISSN (impreso): 1812-6049 | ISSN (en línea): 2523-1820 |
</text:p><text:s></text:s>
</text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>79</text:span>
<text:span>, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>68-76. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Doi: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.1016/j.</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>shpsa.2019.01.006</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Pooper,
</text:p><text:s></text:s>
K.R. <text:s></text:s>
(1962). <text:s></text:s>
La <text:s></text:s>
lógica <text:s></text:s>
de <text:s></text:s>
la </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>investigación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>científica. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Madrid: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Tecnos. 31-32. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Pooper, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>K.R. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(1976). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>A </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>note </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>on </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>verisimilitude. </text:span>
<text:span>
</text:p><text:s></text:s>
The <text:s></text:s>
British <text:s></text:s>
Journal </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>for </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>the </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Philosophy </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>of </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Science</text:span>
<text:span>; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>27</text:span>
<text:span>(2), </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>147-159. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>www.jstor.org/</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>stable/686164 </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Rawluk,
</text:p><text:s></text:s>
A., <text:s></text:s>
Ford, <text:s></text:s>
R., <text:s></text:s>
Anderson, <text:s></text:s>
N. <text:s></text:s>
& </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>et </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>al</text:span>
<text:span>. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(2019). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Exploración </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>múltiples
</text:p><text:s></text:s>
dimensiones <text:s></text:s>
de <text:s></text:s>
valores </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>y valoración: un marco conceptual </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>para </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>mapear </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>y </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>traducir </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>valores </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>para
</text:p><text:s></text:s>
la <text:s></text:s>
investigación <text:s></text:s>
y <text:s></text:s>
la <text:s></text:s>
práctica </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>socioecológica. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Sustainability </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Science</text:span>
<text:span>; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>14</text:span>
<text:span>, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>1187-1200. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Doi: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.1007/s11625-018-0639-1</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Red’ko, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>V.G. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(2016). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Epistemological </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>foundations </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>of </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>investigation </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>of </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>cognitive </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>evolution. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Biologically </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Inspired </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Cognitive </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Architectures</text:span>
<text:span>; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>18</text:span>
<text:span>, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>105-115. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Doi: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.1016/j.</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>bica.2016.10.001 </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Rekalde, I., Vizcarra, M.T. & Macazaga, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>A.M. (2014). La observación como </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>estrategia </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>de </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>investigación </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>para </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>construir contextos de aprendizaje </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>y fomentar procesos participativos. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Educación XX1</text:span>
<text:span>; </text:span>
<text:span>17</text:span>
<text:span>, 199-220. Doi: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.5944/educxx1.17.1.1074</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Secchi, P. (2018). On the role of statistics </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>in the era of big data: A call for a </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>debate. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Statistics </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>and </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Probability </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Letters</text:span>
<text:span>; </text:span>
<text:span>136</text:span>
<text:span>, 10-14. Doi: 10.1016/j.</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>spl.2018.02.041</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Teckchandani, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>A. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>& </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Khanin, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>D. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>(2014). </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>The </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>instructor’s </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>role </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>in </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>the </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>student </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>consulting </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>process: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Working
</text:p><text:s></text:s>
with <text:s></text:s>
the <text:s></text:s>
student <text:s></text:s>
team. </text:span><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Small </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Business </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Institute </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Journal</text:span>
<text:span>; </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10</text:span>
<text:span>, </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>11-24. </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Doi: </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>10.5465/</text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>AMBPP.2014.13187abstract </text:span>
</text:p><draw:frame>
<draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>Barreras epistemológicas para la arquitectura de los datos y la significación en el modelo </text:span>
</text:p><draw:frame>
</draw:page><draw:text-box>
</draw:frame><text:p>
</draw:text-box><text:span>predictivo de la ciencia</text:span>
</text:p><draw:page></draw:page>
</office:drawing>Enlaces refback
- No hay ningún enlace refback.
Journal home page: https://www.aulavirtualusmp.pe/ojs/index.php/rc
Esta obra está bajo una licencia de Creative Commons CC – BY
Dirección: Facultad de Ingeniería y Arquitectura. Av. La Fontana 1250- Urbanización Santa Patricia-La Molina-Lima 12
Teléfonos: 511 2086046, 2086012.
Correo: revistacampus@usmp.pe